Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38562747

ABSTRACT

Accurate grading of IDH-mutant gliomas defines patient prognosis and guides the treatment path. Histological grading is however difficult and, apart from CDKN2A/B homozygous deletions in IDH-mutant astrocytomas, there are no other objective molecular markers used for grading. Experimental Design: RNA-sequencing was conducted on primary IDH-mutant astrocytomas (n=138) included in the prospective CATNON trial, which was performed to assess the prognostic effect of adjuvant and concurrent temozolomide. We integrated the RNA sequencing data with matched DNA-methylation and NGS data. We also used multi-omics data from IDH-mutant astrocytomas included in the TCGA dataset and validated results on matched primary and recurrent samples from the GLASS-NL study. We used the DNA-methylation profiles to generate a Continuous Grading Coefficient (CGC) that is based on classification scores derived from a CNS-tumor classifier. We found that the CGC was an independent predictor of survival outperforming current WHO-CNS5 and methylation-based classification. Our RNA-sequencing analysis revealed four distinct transcription clusters that were associated with i) an upregulation of cell cycling genes; ii) a downregulation of glial differentiation genes; iii) an upregulation of embryonic development genes (e.g. HOX, PAX and TBX) and iv) an upregulation of extracellular matrix genes. The upregulation of embryonic development genes was associated with a specific increase of CpG island methylation near these genes.

2.
Anaesth Crit Care Pain Med ; 43(2): 101342, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38142866

ABSTRACT

INTRODUCTION: Propofol and sevoflurane have a long history in pediatric anesthesia. Combining both drugs at low dose levels offers new opportunities. However, monitoring the hypnotic effects of this drug combination in children is challenging, because the currently available processed EEG-based systems are insufficiently validated in young children and the co-administration of anesthetics. This study investigated electroencephalographic density spectral array monitoring during propofol/sevoflurane coadministration with fixed sevoflurane- and variable propofol dosages. PATIENTS AND METHODS: We analyzed the density spectral array pattern recorded during propofol/sevoflurane anesthesia in pediatric patients from birth to 11 years of age. Data from 78 patients were suitable for analysis. The primary outcome parameter of this study was the correlation between variable propofol dosages and the expression of the four electroencephalogram frequency bands ß, α, θ, and δ. The main secondary outcome parameters were the intra-operative total EEG power and the prevalence of burst suppression. RESULTS: In patients above the age of 1 year, a dose-dependent correlation between the propofol dosage and the relative percentage of ß (-12.2%, p < 0.001) and δ (5.1%, p < 0.001) was found. There was an age-dependent trend toward increasing mean EEG power, with the most significant increase in the first year of life. In 14.1% of our patients, at least one episode of burst suppression occurred. CONCLUSION: DSA-guided augmentation of propofol anesthesia with sevoflurane provides sufficient depth of anesthesia at doses usually considered sub-anesthetic in children, leading to less anesthetic drug exposure for the individual child.


Subject(s)
Anesthesia , Anesthetics, Inhalation , Anesthetics , Methyl Ethers , Propofol , Child , Child, Preschool , Humans , Anesthetics, Intravenous/pharmacology , Electroencephalography , Methyl Ethers/pharmacology , Sevoflurane , Infant, Newborn , Infant
3.
Neurooncol Adv ; 5(1): vdad149, 2023.
Article in English | MEDLINE | ID: mdl-38024241

ABSTRACT

Background: The T2-FLAIR mismatch sign is defined by signal loss of the T2-weighted hyperintense area with Fluid-Attenuated Inversion Recovery (FLAIR) on magnetic resonance imaging, causing a hypointense region on FLAIR. It is a highly specific diagnostic marker for IDH-mutant astrocytoma and is postulated to be caused by intercellular microcystic change in the tumor tissue. However, not all IDH-mutant astrocytomas show this mismatch sign and some show the phenomenon in only part of the lesion. The aim of the study is to determine whether the T2-FLAIR mismatch phenomenon has any prognostic value beyond initial noninvasive molecular diagnosis. Methods: Patients initially diagnosed with histologically lower-grade (2 or 3) IDH-mutant astrocytoma and with at least 2 surgical resections were included in the GLASS-NL cohort. T2-FLAIR mismatch was determined, and the growth pattern of the recurrent tumor immediately before the second resection was annotated as invasive or expansive. The relation between the T2-FLAIR mismatch sign and tumor grade, microcystic change, overall survival (OS), and other clinical parameters was investigated both at first and second resection. Results: The T2-FLAIR mismatch sign was significantly related to Grade 2 (80% vs 51%), longer post-resection median OS (8.3 vs 5.2 years), expansive growth, and lower age at second resection. At first resection, no relation was found between the mismatch sign and OS. Microcystic change was associated with areas of T2-FLAIR mismatch. Conclusions: T2-FLAIR mismatch in IDH-mutant astrocytomas is correlated with microcystic change in the tumor tissue, favorable prognosis, and Grade 2 tumors at the time of second resection.

4.
Cancer Cell ; 41(4): 678-692.e7, 2023 04 10.
Article in English | MEDLINE | ID: mdl-36898379

ABSTRACT

A better understanding of transcriptional evolution of IDH-wild-type glioblastoma may be crucial for treatment optimization. Here, we perform RNA sequencing (RNA-seq) (n = 322 test, n = 245 validation) on paired primary-recurrent glioblastoma resections of patients treated with the current standard of care. Transcriptional subtypes form an interconnected continuum in a two-dimensional space. Recurrent tumors show preferential mesenchymal progression. Over time, hallmark glioblastoma genes are not significantly altered. Instead, tumor purity decreases over time and is accompanied by co-increases in neuron and oligodendrocyte marker genes and, independently, tumor-associated macrophages. A decrease is observed in endothelial marker genes. These composition changes are confirmed by single-cell RNA-seq and immunohistochemistry. An extracellular matrix-associated gene set increases at recurrence and bulk, single-cell RNA, and immunohistochemistry indicate it is expressed mainly by pericytes. This signature is associated with significantly worse survival at recurrence. Our data demonstrate that glioblastomas evolve mainly by microenvironment (re-)organization rather than molecular evolution of tumor cells.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Glioblastoma/pathology , Tumor Microenvironment/genetics , Brain Neoplasms/pathology , Neoplasm Recurrence, Local/genetics , Gene Expression Profiling , Transcriptome
5.
Minerva Anestesiol ; 89(4): 351-358, 2023 04.
Article in English | MEDLINE | ID: mdl-36799292

ABSTRACT

Depth of hypnosis monitoring using numerical index based processed electroencephalography is part of the standard anesthesia equipment in many operating rooms. Unfortunately, this method has its limitations, especially in pediatric patients. Therefore, there is an increasing interest in raw electroencephalography parameters. Electroencephalographic density spectral array (DSA) monitoring is a real-time technique that can be used in all age groups and with all common anesthetics. We present a practice-oriented introduction to the principle of DSA monitoring in pediatric anesthesia for pediatric anesthesiologists and two algorithms for using this technology in children under sevoflurane and propofol anesthesia.


Subject(s)
Anesthesia , Anesthetics, Inhalation , Propofol , Humans , Child , Sevoflurane , Electroencephalography/methods , Anesthetics, Intravenous
6.
Small ; 18(49): e2204485, 2022 12.
Article in English | MEDLINE | ID: mdl-36207287

ABSTRACT

A major obstacle in glioma research is the lack of in vitro models that can retain cellular features of glioma cells in vivo. To overcome this limitation, a 3D-engineered scaffold, fabricated by two-photon polymerization, is developed as a cell culture model system to study patient-derived glioma cells. Scanning electron microscopy, (live cell) confocal microscopy, and immunohistochemistry are employed to assess the 3D model with respect to scaffold colonization, cellular morphology, and epidermal growth factor receptor localization. Both glioma patient-derived cells and established cell lines successfully colonize the scaffolds. Compared to conventional 2D cell cultures, the 3D-engineered scaffolds more closely resemble in vivo glioma cellular features and allow better monitoring of individual cells, cellular protrusions, and intracellular trafficking. Furthermore, less random cell motility and increased stability of cellular networks is observed for cells cultured on the scaffolds. The 3D-engineered glioma scaffolds therefore represent a promising tool for studying brain cancer mechanobiology as well as for drug screening studies.


Subject(s)
ErbB Receptors , Humans , Biophysics
7.
Clin Cancer Res ; 28(12): 2527-2535, 2022 06 13.
Article in English | MEDLINE | ID: mdl-35275197

ABSTRACT

PURPOSE: In a post hoc analysis of the CATNON trial (NCT00626990), we explored whether adding temozolomide to radiotherapy improves outcome in patients with IDH1/2 wildtype (wt) anaplastic astrocytomas with molecular features of glioblastoma [redesignated as glioblastoma, isocitrate dehydrogenase-wildtype (IDH-wt) in the 2021 World Health Organization (WHO) classification of central nervous system tumors]. PATIENTS AND METHODS: From the randomized phase III CATNON study examining the addition of adjuvant and concurrent temozolomide to radiotherapy in anaplastic astrocytomas, we selected a subgroup of IDH1/2wt and H3F3Awt tumors with presence of TERT promoter mutations and/or EGFR amplifications and/or combined gain of chromosome 7 and loss of chromosome 10. Molecular abnormalities including MGMT promoter methylation status were determined by next-generation sequencing, DNA methylation profiling, and SNaPshot analysis. RESULTS: Of the 751 patients entered in the CATNON study, 670 had fully molecularly characterized tumors. A total of 159 of these tumors met the WHO 2021 molecular criteria for glioblastoma, IDH-wt. Of these patients, 47 received radiotherapy only and 112 received a combination of radiotherapy and temozolomide. There was no added effect of temozolomide on either overall survival [HR, 1.19; 95% confidence interval (CI), 0.82-1.71] or progression-free survival (HR, 0.87; 95% CI, 0.61-1.24). MGMT promoter methylation was prognostic for overall survival, but was not predictive for outcome to temozolomide treatment either with respect to overall survival or progression-free survival. CONCLUSIONS: In this cohort of patients with glioblastoma, IDH-wt temozolomide treatment did not add benefit beyond that observed from radiotherapy, regardless of MGMT promoter status. These findings require a new well-powered prospective clinical study to explore the efficacy of temozolomide treatment in this patient population.


Subject(s)
Astrocytoma , Brain Neoplasms , Glioblastoma , Antineoplastic Agents, Alkylating , Astrocytoma/drug therapy , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Brain Neoplasms/radiotherapy , DNA Methylation , DNA Modification Methylases/genetics , DNA Repair Enzymes/genetics , Dacarbazine , Glioblastoma/drug therapy , Glioblastoma/genetics , Glioblastoma/radiotherapy , Humans , Isocitrate Dehydrogenase/genetics , Prospective Studies , Temozolomide/therapeutic use
8.
Clin Cancer Res ; 28(11): 2440-2448, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35294545

ABSTRACT

PURPOSE: Despite recent advances in the molecular characterization of gliomas, it remains unclear which patients benefit most from which second-line treatments. The TAVAREC trial was a randomized, open-label phase II trial assessing the benefit of the addition of the angiogenesis inhibitor bevacizumab to treatment with temozolomide in patients with a first enhancing recurrence of World Health Organization grade 2 or 3 glioma without 1p/19q codeletion. We evaluated the prognostic significance of genome-wide DNA methylation profiles and copy-number variations on the TAVAREC trial samples. EXPERIMENTAL DESIGN: Isocitrate dehydrogenase (IDH) mutation status was determined via Sanger sequencing and IHC. DNA methylation analysis was performed using the MethylationEPIC BeadChip (Illumina) from which 1p/19q codeletion, MGMT promoter methylation (MGMT-STP27), and homozygous deletion of CDKN2A/B were determined. DNA methylation classes were determined according to classifiers developed in Heidelberg and The Cancer Genome Atlas (TCGA; "Heidelberg" and "TCGA" classifier respectively). RESULTS: DNA methylation profiles of 122 samples were successfully determined. As expected, most samples were IDH-mutant (89/122) and MGMT promotor methylated (89/122). Methylation classes were prognostic for time to progression. However, Heidelberg methylation classes determined at time of diagnosis were no longer prognostic following enhancing recurrence of the tumor. In contrast, TCGA methylation classes of primary samples remained prognostic also following enhancing recurrence. Homozygous deletions in CDKN2A/B were found in 10 of 87 IDH-mutated samples and were prognostically unfavorable at recurrence. CONCLUSIONS: DNA methylome Heidelberg classification at time of diagnosis is no longer of prognostic value at the time of enhancing recurrence. CDKN2A/B deletion status was predictive of survival from progression of IDH-mutated tumors.


Subject(s)
Brain Neoplasms , Glioma , Brain Neoplasms/pathology , DNA Methylation , DNA Modification Methylases/genetics , DNA Repair Enzymes/genetics , Glioma/pathology , Homozygote , Humans , Isocitrate Dehydrogenase/genetics , Magnetic Resonance Imaging , Mutation , Neoplasm Recurrence, Local/genetics , Prognosis , Sequence Deletion
9.
Neuro Oncol ; 24(3): 429-441, 2022 03 12.
Article in English | MEDLINE | ID: mdl-34608482

ABSTRACT

BACKGROUND: EGFR is among the genes most frequently altered in glioblastoma, with exons 2-7 deletions (EGFRvIII) being among its most common genomic mutations. There are conflicting reports about its prognostic role and it remains unclear whether and how it differs in signaling compared with wildtype EGFR. METHODS: To better understand the oncogenic role of EGFRvIII, we leveraged 4 large datasets into 1 large glioblastoma transcriptome dataset (n = 741) alongside 81 whole-genome samples from 2 datasets. RESULTS: The EGFRvIII/EGFR expression ratios differ strongly between tumors and range from 1% to 95%. Interestingly, the slope of relative EGFRvIII expression is near-linear, which argues against a more positive selection pressure than EGFR wildtype. An absence of selection pressure is also suggested by the similar survival between EGFRvIII-positive and -negative glioblastoma patients. EGFRvIII levels are inversely correlated with pan-EGFR (all wildtype and mutant variants) expression, which indicates that EGFRvIII has a higher potency in downstream pathway activation. EGFRvIII-positive glioblastomas have a lower CDK4 or MDM2 amplification incidence than EGFRvIII-negative (P = .007), which may point toward crosstalk between these pathways. EGFRvIII-expressing tumors have an upregulation of "classical" subtype genes compared to those with EGFR-amplification only (P = 3.873e-6). Genomic breakpoints of the EGFRvIII deletions have a preference toward the 3'-end of the large intron-1. These preferred breakpoints preserve a cryptic exon resulting in a novel EGFRvIII variant and preserve an intronic enhancer. CONCLUSIONS: These data provide deeper insights into the complex EGFRvIII biology and provide new insights for targeting EGFRvIII mutated tumors.


Subject(s)
Brain Neoplasms , Glioblastoma , Brain Neoplasms/pathology , ErbB Receptors/metabolism , Glioblastoma/pathology , Humans , Transcriptome
10.
Paediatr Anaesth ; 31(10): 1031-1039, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34218499

ABSTRACT

The brain is considered as the major target organ of anesthetic agents. Despite that, a reliable means to monitor its function during anesthesia is lacking. Mid latency auditory evoked potentials are known to be sensitive to anesthetic agents and might therefore be a measure of hypnotic state in pediatric patients. This review investigates the available literature describing various aspects of mid latency auditory evoked potential monitoring in pediatric anesthesia.


Subject(s)
Anesthesia, General , Anesthetics , Anesthetics/pharmacology , Child , Evoked Potentials, Auditory , Humans
11.
Lancet Oncol ; 22(6): 813-823, 2021 06.
Article in English | MEDLINE | ID: mdl-34000245

ABSTRACT

BACKGROUND: The CATNON trial investigated the addition of concurrent, adjuvant, and both current and adjuvant temozolomide to radiotherapy in adults with newly diagnosed 1p/19q non-co-deleted anaplastic gliomas. The benefit of concurrent temozolomide chemotherapy and relevance of mutations in the IDH1 and IDH2 genes remain unclear. METHODS: This randomised, open-label, phase 3 study done in 137 institutions across Australia, Europe, and North America included patients aged 18 years or older with newly diagnosed 1p/19q non-co-deleted anaplastic gliomas and a WHO performance status of 0-2. Patients were randomly assigned (1:1:1:1) centrally using a minimisation technique to radiotherapy alone (59·4 Gy in 33 fractions; three-dimensional conformal radiotherapy or intensity-modulated radiotherapy), radiotherapy with concurrent oral temozolomide (75 mg/m2 per day), radiotherapy with adjuvant oral temozolomide (12 4-week cycles of 150-200 mg/m2 temozolomide given on days 1-5), or radiotherapy with both concurrent and adjuvant temozolomide. Patients were stratified by institution, WHO performance status score, age, 1p loss of heterozygosity, the presence of oligodendroglial elements on microscopy, and MGMT promoter methylation status. The primary endpoint was overall survival adjusted by stratification factors at randomisation in the intention-to-treat population. A second interim analysis requested by the independent data monitoring committee was planned when two-thirds of total required events were observed to test superiority or futility of concurrent temozolomide. This study is registered with ClinicalTrials.gov, NCT00626990. FINDINGS: Between Dec 4, 2007, and Sept 11, 2015, 751 patients were randomly assigned (189 to radiotherapy alone, 188 to radiotherapy with concurrent temozolomide, 186 to radiotherapy and adjuvant temozolomide, and 188 to radiotherapy with concurrent and adjuvant temozolomide). Median follow-up was 55·7 months (IQR 41·0-77·3). The second interim analysis declared futility of concurrent temozolomide (median overall survival was 66·9 months [95% CI 45·7-82·3] with concurrent temozolomide vs 60·4 months [45·7-71·5] without concurrent temozolomide; hazard ratio [HR] 0·97 [99·1% CI 0·73-1·28], p=0·76). By contrast, adjuvant temozolomide improved overall survival compared with no adjuvant temozolomide (median overall survival 82·3 months [95% CI 67·2-116·6] vs 46·9 months [37·9-56·9]; HR 0·64 [95% CI 0·52-0·79], p<0·0001). The most frequent grade 3 and 4 toxicities were haematological, occurring in no patients in the radiotherapy only group, 16 (9%) of 185 patients in the concurrent temozolomide group, and 55 (15%) of 368 patients in both groups with adjuvant temozolomide. No treatment-related deaths were reported. INTERPRETATION: Adjuvant temozolomide chemotherapy, but not concurrent temozolomide chemotherapy, was associated with a survival benefit in patients with 1p/19q non-co-deleted anaplastic glioma. Clinical benefit was dependent on IDH1 and IDH2 mutational status. FUNDING: Merck Sharpe & Dohme.


Subject(s)
Glioma/drug therapy , Isocitrate Dehydrogenase/genetics , Temozolomide/administration & dosage , Adolescent , Adult , Aged , Australia , Chemotherapy, Adjuvant , Chromosomes, Human, Pair 1/genetics , Chromosomes, Human, Pair 19/genetics , Combined Modality Therapy , Dacarbazine/administration & dosage , Dacarbazine/adverse effects , Europe , Female , Glioma/genetics , Glioma/pathology , Glioma/radiotherapy , Humans , Loss of Heterozygosity/genetics , Male , Middle Aged , North America , Radiotherapy, Conformal , Young Adult
12.
Neuro Oncol ; 23(9): 1547-1559, 2021 09 01.
Article in English | MEDLINE | ID: mdl-33914057

ABSTRACT

BACKGROUND: Survival in patients with IDH1/2-mutant (mt) anaplastic astrocytomas is highly variable. We have used the prospective phase 3 CATNON trial to identify molecular factors related to outcome in IDH1/2mt anaplastic astrocytoma patients. METHODS: The CATNON trial randomized 751 adult patients with newly diagnosed 1p/19q non-codeleted anaplastic glioma to 59.4 Gy radiotherapy +/- concurrent and/or adjuvant temozolomide. The presence of necrosis and/or microvascular proliferation was scored at central pathology review. Infinium MethylationEPIC BeadChip arrays were used for genome-wide DNA methylation analysis and the determination of copy number variations (CNV). Two DNA methylation-based tumor classifiers were used for risk stratification. Next-generation sequencing (NGS) was performed using 1 of the 2 glioma-tailored NGS panels. The primary endpoint was overall survival measured from the date of randomization. RESULTS: Full analysis (genome-wide DNA methylation and NGS) was successfully performed on 654 tumors. Of these, 432 tumors were IDH1/2mt anaplastic astrocytomas. Both epigenetic classifiers identified poor prognosis patients that partially overlapped. A predictive prognostic Cox proportional hazard model identified that independent prognostic factors for IDH1/2mt anaplastic astrocytoma patients included; age, mini-mental state examination score, treatment with concurrent and/or adjuvant temozolomide, the epigenetic classifiers, PDGFRA amplification, CDKN2A/B homozygous deletion, PI3K mutations, and total CNV load. Independent recursive partitioning analysis highlights the importance of these factors for patient prognostication. CONCLUSION: Both clinical and molecular factors identify IDH1/2mt anaplastic astrocytoma patients with worse outcome. These results will further refine the current WHO criteria for glioma classification.


Subject(s)
Brain Neoplasms , Glioma , Adult , Brain Neoplasms/genetics , Brain Neoplasms/therapy , Chromosomes, Human, Pair 1 , DNA Copy Number Variations , DNA Methylation , Glioma/genetics , Glioma/therapy , Homozygote , Humans , Isocitrate Dehydrogenase/genetics , Mutation , Prognosis , Prospective Studies , Sequence Deletion
13.
Acta Neuropathol ; 141(6): 945-957, 2021 06.
Article in English | MEDLINE | ID: mdl-33740099

ABSTRACT

Somatic mutations in the isocitrate dehydrogenase genes IDH1 and IDH2 occur at high frequency in several tumour types. Even though these mutations are confined to distinct hotspots, we show that gliomas are the only tumour type with an exceptionally high percentage of IDH1R132H mutations. Patients harbouring IDH1R132H mutated tumours have lower levels of genome-wide DNA-methylation, and an associated increased gene expression, compared to tumours with other IDH1/2 mutations ("non-R132H IDH1/2 mutations"). This reduced methylation is seen in multiple tumour types and thus appears independent of the site of origin. For 1p/19q non-codeleted glioma (astrocytoma) patients, we show that this difference is clinically relevant: in samples of the randomised phase III CATNON trial, patients harbouring tumours with IDH mutations other than IDH1R132H have a better outcome (hazard ratio 0.41, 95% CI [0.24, 0.71], p = 0.0013). Such non-R132H IDH1/2-mutated tumours also had a significantly lower proportion of tumours assigned to prognostically poor DNA-methylation classes (p < 0.001). IDH mutation-type was independent in a multivariable model containing known clinical and molecular prognostic factors. To confirm these observations, we validated the prognostic effect of IDH mutation type on a large independent dataset. The observation that non-R132H IDH1/2-mutated astrocytomas have a more favourable prognosis than their IDH1R132H mutated counterpart indicates that not all IDH-mutations are identical. This difference is clinically relevant and should be taken into account for patient prognostication.


Subject(s)
Astrocytoma/diagnosis , Astrocytoma/genetics , Brain Neoplasms/genetics , DNA Methylation/genetics , Isocitrate Dehydrogenase/genetics , Mutation , Brain Neoplasms/diagnosis , Humans , Prognosis , Survival Rate
14.
Paediatr Anaesth ; 30(10): 1124-1131, 2020 10.
Article in English | MEDLINE | ID: mdl-32767812

ABSTRACT

BACKGROUND: In children, the preoperative hydration status is an important part of the overall clinical assessment. The assumed preoperative fluid deficit is often routinely replaced during induction without knowing the child's actual fluid status. AIM: We investigated the predictive value of the Pleth Variability Index as a measure of fluid responsiveness in spontaneously breathing anesthetized children. METHODS: Pleth Variability Index, stroke volume and Cardiac Index, measured by electrovelocimetry, mean blood pressure, and heart rate were recorded during anesthesia induction in 50 pediatric patients <6 years. Baseline values were compared to values recorded after administration of 10 mL/kg of Ringer's lactate and during two passive leg raising tests (before and after fluid administration). Fluid responsiveness was defined as an increase of ≥10% in stroke volume. RESULTS: Only in fluid responsive patients, Pleth Variability Index values were higher before fluid administration than thereafter (21.4 ± 5.9% vs 15.0 ± 9.4%, 95% CI of difference 1.1 to 11.8%, P = .02). Pleth Variability Index values at baseline were higher in fluid responders (21.4 ± 5.9%) than in fluid nonresponders (15.3 ± 7.7%), 95% CI of difference 1.6 to 10.6%, P = .009. The area under the receiver operating curve indicating fluid responsiveness was 0.781 (95% CI 0.623 to 0.896, P = .0002), with the highest sensitivity (82%) and specificity (70%) at a Pleth Variability Index of >15% (Positive predictive value 2.71 (95% CI: 1.4 to 5.2)). Only in fluid responders, the Pleth Variability Index decreased during passive leg raising, while stroke volume increased. CONCLUSIONS: The Pleth Variability Index may be of additional value to predict fluid responsiveness in spontaneously breathing anesthetized children. A significant overlap in baseline Pleth Variability Index values between fluid responsive and nonfluid responsive patients does not allow a reliable recommendation as to a cut off value.


Subject(s)
Fluid Therapy , Hemodynamics , Child , Humans , Predictive Value of Tests , Respiration , Stroke Volume
15.
Neurooncol Adv ; 2(1): vdz051, 2020.
Article in English | MEDLINE | ID: mdl-32642719

ABSTRACT

BACKGROUND: The randomized phase II INTELLANCE-2/EORTC_1410 trial on EGFR-amplified recurrent glioblastomas showed a trend towards improved overall survival when patients were treated with depatux-m plus temozolomide compared with the control arm of alkylating chemotherapy only. We here performed translational research on material derived from this clinical trial to identify patients that benefit from this treatment. METHODS: Targeted DNA-sequencing and whole transcriptome analysis was performed on clinical trial samples. High-throughput, high-content imaging analysis was done to understand the molecular mechanism underlying the survival benefit. RESULTS: We first define the tumor genomic landscape in this well-annotated patient population. We find that tumors harboring EGFR single-nucleotide variations (SNVs) have improved outcome in the depatux-m + TMZ combination arm. Such SNVs are common to the extracellular domain of the receptor and functionally result in a receptor that is hypersensitive to low-affinity EGFR ligands. These hypersensitizing SNVs and the ligand-independent EGFRvIII variant are inversely correlated, indicating two distinct modes of evolution to increase EGFR signaling in glioblastomas. Ligand hypersensitivity can explain the therapeutic efficacy of depatux-m as increased ligand-induced activation will result in increased exposure of the epitope to the antibody-drug conjugate. We also identified tumors harboring mutations sensitive to "classical" EGFR tyrosine-kinase inhibitors, providing a potential alternative treatment strategy. CONCLUSIONS: These data can help guide treatment for recurrent glioblastoma patients and increase our understanding into the molecular mechanisms underlying EGFR signaling in these tumors.

16.
EBioMedicine ; 56: 102796, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32512509

ABSTRACT

BACKGROUND: Clinical responses to EGFR tyrosine kinase inhibitors (TKIs) are restricted to tumors harboring specific activating mutations and even then, not all tyrosine kinase inhibitors provide clinical benefit. All TKIs however, effectively inhibit EGFR phosphorylation regardless of the mutation present. METHODS: High-throughput, high-content imaging analysis, western blot, Reversed phase protein arrays, mass spectrometry and RT-qPCR. FINDINGS: We show that the addition of TKIs results in a strong and rapid intracellular accumulation of EGFR. This accumulation mimicked clinical efficacy as it was observed only in the context of the combination of a TKI-sensitive mutation with a clinically effective (type I) TKI. Intracellular accumulation of EGFR was able to predict response to gefitinib in a panel of cell-lines with different EGFR mutations. Our assay also predicted clinical benefit to EGFR TKIs on a cohort of pulmonary adenocarcinoma patients (hazard ratio 0.21, P=0.0004 [Cox proportional hazard model]) and could predict the clinical response in patients harboring rare mutations with unknown TKI-sensitivity. All investigated TKIs, regardless of clinical efficacy, inhibited EGFR phosphorylation and downstream pathway activation, irrespective of the mutation present. Intracellular accumulation of EGFR depended on a continued presence of TKI indicating (type I) TKIs remain associated with the protein even after its dephosphorylation. Accumulation therefore is likely caused by two consecutive conformational changes, induced by both activating mutation and TKI, that combined block EGFR-membrane recycling. INTERPRETATION: We report on an assay that mimics the discrepancy between molecular and clinical activity of EGFR-TKIs, which may allow response prediction in vitro and helps understand the mechanism of effective inhibitors.


Subject(s)
Adenocarcinoma of Lung/metabolism , Protein Kinase Inhibitors/pharmacology , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/genetics , Cell Line, Tumor , Cell Membrane/metabolism , ErbB Receptors/genetics , ErbB Receptors/metabolism , Female , HeLa Cells , Humans , Male , Mass Spectrometry , Mutation , Phosphorylation/drug effects , Protein Array Analysis
17.
Minerva Anestesiol ; 86(6): 601-607, 2020 06.
Article in English | MEDLINE | ID: mdl-32000478

ABSTRACT

BACKGROUND: Recently published articles address concerns about the safe use of currently available index-based depth of hypnosis monitors. Electroencephalographic Density Spectral Array monitoring facilitates the interpretation of unprocessed electroencephalogram data, providing the anesthesiologist with real-time drug-specific information on hypnotic depth. The primary aim of this study was to investigate the clinical applicability of Density Spectral Array with a commercially available monitor as the Narcotrend EEG monitor in teenagers under procedural sedation using propofol. METHODS: We performed a secondary analysis of EEG data. Unprocessed electroencephalogram data from 37 patients, aged 12-18 years, scheduled for gastrointestinal endoscopy under propofol sedation, were used for analysis. The relationship between non-steady state propofol concentrations and Density Spectral Array, represented by the four electroencephalographic frequency bands ß, α, θ and δ was investigated. RESULTS: Increasing propofol concentration caused augmentation in the amplitude of frontal δ oscillations and a decrease in the amplitude of frontal ß oscillations. The expression of α oscillations showed a biphasic pattern related to increasing the propofol concentration. Spearman correlation analysis showed a significant correlation between propofol concentration and relative EEG power in ß (r -0.84, P<0.0001), θ (r 0.50, P=0.004) and δ (r 0.63, P<0.0001). CONCLUSIONS: We were able to show that DSA displayed in real time, on a commercially available DoA monitor (the Narcotrend EEG monitor), can provide the anesthesiologist with understandable information regarding the dose-dependent EEG effects of propofol in teenagers.


Subject(s)
Propofol , Adolescent , Anesthetics, Intravenous , Electroencephalography , Humans , Monitoring, Intraoperative , Monitoring, Physiologic , Propofol/pharmacology
18.
Neuro Oncol ; 21(10): 1263-1272, 2019 10 09.
Article in English | MEDLINE | ID: mdl-31125418

ABSTRACT

BACKGROUND: Precision medicine trials targeting the epidermal growth factor receptor (EGFR) in glioblastoma patients require selection for EGFR-amplified tumors. However, there is currently no gold standard in determining the amplification status of EGFR or variant III (EGFRvIII) expression. Here, we aimed to determine which technique and which cutoffs are suitable to determine EGFR amplification status. METHODS: We compared fluorescence in-situ hybridization (FISH) and real-time quantitative (RT-q)PCR data from patients screened for trial inclusion into the Intellance 2 clinical trial, with data from a panel-based next generation sequencing (NGS) platform (both DNA and RNA). RESULTS: By using data from >1000 samples, we show that at least 50% of EGFR amplified nuclei should be present to define EGFR gene amplification by FISH. Gene amplification (as determined by FISH) correlates with EGFR expression levels (as determined by RT-qPCR) with receiver operating characteristics analysis showing an area under the curve of up to 0.902. EGFR expression as assessed by RT-qPCR therefore may function as a surrogate marker for EGFR amplification. Our NGS data show that EGFR copy numbers can strongly vary between tumors, with levels ranging from 2 to more than 100 copies per cell. Levels exceeding 5 gene copies can be used to define EGFR-amplification by NGS; below this level, FISH detects very few (if any) EGFR amplified nuclei and none of the samples express EGFRvIII. CONCLUSION: Our data from central laboratories and diagnostic sequencing facilities, using material from patients eligible for clinical trial inclusion, help define the optimal cutoff for various techniques to determine EGFR amplification for diagnostic purposes.


Subject(s)
Glioblastoma/genetics , Nucleic Acid Amplification Techniques/standards , Patient Selection , Clinical Trials as Topic/standards , ErbB Receptors/analysis , ErbB Receptors/genetics , Gene Amplification , Gene Dosage , Glioblastoma/drug therapy , High-Throughput Nucleotide Sequencing/standards , Humans , In Situ Hybridization, Fluorescence/standards , Real-Time Polymerase Chain Reaction/standards , Reference Values
19.
Lancet Oncol ; 19(9): 1170-1179, 2018 09.
Article in English | MEDLINE | ID: mdl-30115593

ABSTRACT

BACKGROUND: Bevacizumab is frequently used in the treatment of recurrent WHO grade II and III glioma, but without supporting evidence from randomised trials. Therefore, we assessed the use of bevacizumab in patients with first recurrence of grade II or III glioma who did not have 1p/19q co-deletion. METHODS: The TAVAREC trial was a randomised, open-label phase 2 trial done at 32 centres across Europe in patients with locally diagnosed grade II or III glioma without 1p/19q co-deletion, with a first and contrast-enhancing recurrence after initial radiotherapy or chemotherapy, or both. Previous chemotherapy must have been stopped at least 6 months before enrolment and radiotherapy must have been stopped at least 3 months before enrolment. Random group assignment was done electronically through the European Organisation for Research and Treatment of Cancer web-based system, stratified by a minimisation procedure using institution, initial histology (WHO grade II vs III), WHO performance status (0 or 1 vs 2), and previous treatment (radiotherapy, chemotherapy, or both). Patients were assigned to receive either temozolomide (150-200 mg/m2, orally) monotherapy on days 1-5 every 4 weeks for a maximum of 12 cycles, or the same temozolomide regimen in combination with bevacizumab (10 mg/kg, intravenously) every 2 weeks until progression. The primary endpoint was overall survival at 12 months in the per-protocol population. Safety analyses were done in all patients who started their allocated treatment. The study is registered at EudraCT (2009-017422-39) and ClinicalTrials.gov (NCT01164189), and is complete. FINDINGS: Between Feb 8, 2011, and July 31, 2015, 155 patients were enrolled and randomly assigned to receive either monotherapy (n=77) or combination therapy (n=78). Overall survival in the per-protocol population at 12 months was achieved by 44 (61% [80% CI 53-69]) of 72 patients in the temozolomide group and 38 (55% [47-69]) of 69 in the combination group. The most frequent toxicity was haematological: 17 (23%) of 75 patients in the monotherapy group and 25 (33%) of 76 in the combination group developed grade 3 or 4 haematological toxicity. Other than haematological toxicities, the most common adverse events were nervous system disorders (59 [79%] of 75 patients in the monotherapy group vs 65 [86%] of 76 in the combination group), fatigue (53 [70%] vs 61 [80%]), and nausea (39 [52%] vs 43 [56%]). Infections were more frequently reported in the combination group (29 [38%] of 76 patients) than in the monotherapy group (17 [23%] of 75). One treatment-related death was reported in the combination group (infection after intratumoral haemorrhage during a treatment-related grade 4 thrombocytopenia). INTERPRETATION: We found no evidence of improved overall survival with bevacizumab and temozolomide combination treatment versus temozolomide monotherapy. The findings from this study provide no support for further phase 3 studies on the role of bevacizumab in this disease. FUNDING: Roche Pharmaceuticals.


Subject(s)
Antineoplastic Agents, Alkylating/administration & dosage , Antineoplastic Agents, Immunological/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Bevacizumab/administration & dosage , Brain Neoplasms/drug therapy , Glioma/drug therapy , Neoplasm Recurrence, Local , Temozolomide/administration & dosage , Adult , Antineoplastic Agents, Alkylating/adverse effects , Antineoplastic Agents, Immunological/adverse effects , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Bevacizumab/adverse effects , Brain Neoplasms/genetics , Brain Neoplasms/mortality , Brain Neoplasms/pathology , Chromosome Deletion , Chromosomes, Human, Pair 1 , Chromosomes, Human, Pair 19 , Drug Administration Schedule , Europe , Female , Glioma/genetics , Glioma/mortality , Glioma/pathology , Humans , Male , Middle Aged , Neoplasm Grading , Temozolomide/adverse effects , Time Factors , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...