Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Drug Deliv Transl Res ; 13(5): 1420-1435, 2023 05.
Article in English | MEDLINE | ID: mdl-36749480

ABSTRACT

The use of implantable biomaterials to replace physiological and anatomical functions has been widely investigated in the clinic. However, the selection of biomaterials is crucial for long-term function, and the implantation of certain biomaterials can cause inflammatory and fibrotic processes, triggering a foreign body reaction that leads to loss of function and consequent need for removal. Specifically, the Wnt signaling pathway controls the healing process of the human body, and its dysregulation can result in inflammation and fibrosis, such as in peritoneal fibrosis. Here, we assessed the effects of daily oral administration of a Wnt pathway inhibitor complex (CD:LGK974) to reduce the inflammatory, fibrotic, and angiogenic processes caused by intraperitoneal implants. CD:LGK974 significantly reduced the infiltration of immune cells and release of inflammatory cytokines in the implant region compared to the control groups. Furthermore, CD:LGK974 inhibited collagen deposition and reduced the expression of pro-fibrotic α-SMA and TGF-ß1, confirming fibrosis reduction. Finally, the CD:LGK974 complex decreased VEGF levels and both the number and area of blood vessels formed, suggesting decreased angiogenesis. This work introduces a potential new application of the Wnt inhibitor complex to reduce peritoneal fibrosis and the rejection of implants at the intraperitoneal site, possibly allowing for longer-term functionality of existing clinical biomaterials.


Subject(s)
Peritoneal Fibrosis , Humans , Peritoneal Fibrosis/complications , Vascular Endothelial Growth Factor A/metabolism , Inflammation/drug therapy , Inflammation/etiology , Foreign-Body Reaction/etiology , Foreign-Body Reaction/metabolism , Wound Healing
2.
Biochem Pharmacol ; 182: 114210, 2020 12.
Article in English | MEDLINE | ID: mdl-32882205

ABSTRACT

TRPV1 is a cation channel expressed in peripheral nociceptive pathways and its activation can trigger nociception signals to the brain. Ketamine is an intravenous anesthetic routinely used for anesthesia induction and with potent analgesic activity. Despite its proven depressant action on peripheral sensory pathways, the relationship between ketamine and TRPV1 receptors is still unclear. In this study, we evaluated the effect of ketamine injected peripherally in a rat model of spontaneous pain induced by capsaicin. We also investigated the effect of ketamine on Ca2+ transients in cultured dorsal root ganglia (DRG) neurons and HEK293 cells expressing the TRPV1 receptor (HEK-TRPV1 cells). Intraplantar administration of ketamine caused an unexpected increase in nocifensive behavior induced by capsaicin. Incubation of HEK-TRPV1 cells with 10 µM ketamine increased TRPV1 and PKCє phosphorylation. Ketamine potentiated capsaicin-induced Ca2+ transients in HEK-TRPV1 cells and DRG neurons. Ketamine also prevented TRPV1 receptor desensitization induced by successive applications of capsaicin. єV1-2, a PKCє inhibitor, reduced potentiation of capsaicin-induced Ca2+ transients by ketamine. Taken together, our data indicate that ketamine potentiates TRPV1 receptor sensitivity to capsaicin through a mechanism dependent on PKCє activity.


Subject(s)
Ketamine/administration & dosage , Nociception/drug effects , Signal Transduction/drug effects , TRPV Cation Channels/agonists , TRPV Cation Channels/metabolism , Animals , Capsaicin/administration & dosage , Cells, Cultured , Dose-Response Relationship, Drug , Drug Synergism , Excitatory Amino Acid Antagonists/administration & dosage , Ganglia, Spinal/drug effects , Ganglia, Spinal/metabolism , HEK293 Cells , Humans , Male , Nociception/physiology , Rats , Rats, Wistar , Signal Transduction/physiology
3.
Proteomics Clin Appl ; 14(4): e2000017, 2020 07.
Article in English | MEDLINE | ID: mdl-32506788

ABSTRACT

PURPOSE: Although the pathophysiological response of cardiac tissue to pro-hypertrophic stimulus is well characterized, a comprehensive characterization of the molecular events underlying the pathological hypertrophy in cardiomyocytes during the early compensated cardiac hypertrophy is currently lacking. EXPERIMENTAL DESIGN: A quantitative label-free proteomic analysis of cardiomyocytes isolated was conducted from mice treated subcutaneously with isoproterenol (ISO) during 7 days in comparison with cardiomyocytes from control animals (CT). RESULTS: Canonical pathway analysis of dysregulated proteins indicated that ISO-hypertrophy drives the activation of actin cytoskeleton and integrin-linked kinase (ILK) signaling, and inhibition of the sirtuin signaling. Alteration in cardiac contractile function and calcium signaling are predicted as downstream effects of ISO-hypertrophy probably due to the upregulation of key elements such as myosin-7 (MYH7). Confocal microscopy corroborated that indeed ISO-treatment led to increased abundance of MYH7. Potential early markers for cardiac hypertrophy as APBB1, GOLGA4, HOOK1, KATNA1, KIFBP, MAN2B2, and SLC16A1 are also reported. CONCLUSIONS AND CLINICAL RELEVANCE: The data consist in a complete molecular mapping of ISO-induced compensated cardiac hypertrophy model at cardiomyocyte level. Marker candidates reported may assist early diagnosis of cardiac hypertrophy and ultimately heart failure.


Subject(s)
Cardiomegaly/metabolism , Isoproterenol/toxicity , Myocytes, Cardiac/metabolism , Proteome/genetics , Signal Transduction , Actins/genetics , Animals , Cardiomegaly/chemically induced , Cardiomegaly/genetics , Cardiomegaly/physiopathology , Gene Expression Regulation , Male , Mice , Mice, Inbred C57BL , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Myocytes, Cardiac/physiology , Myosin Heavy Chains/genetics , Protein Serine-Threonine Kinases/metabolism , Proteomics
5.
FEBS J ; 286(1): 110-123, 2019 01.
Article in English | MEDLINE | ID: mdl-30451379

ABSTRACT

Huntington's disease (HD) is a neurodegenerative genetic disorder. Although described as a brain pathology, there is evidence suggesting that defects in other systems can contribute to disease progression. In line with this, cardiovascular defects are a major cause of death in HD. To date, relatively little is known about the peripheral abnormalities associated with the disease. Here, we applied a range of assays to evaluate cardiac electro-mechanical properties in vivo, using a previously characterized mouse model of HD (BACHD), and in vitro, using cardiomyocytes isolated from the same mice. We observed conduction disturbances including QT interval prolongation in BACHD mice, indicative of cardiac dysfunction. Cardiomyocytes from these mice demonstrated cellular electro-mechanical abnormalities, including a prolonged action potential, arrhythmic contractions, and relaxation disturbances. Cellular arrhythmia was accompanied by an increase in calcium waves and increased Ca2+ /calmodulin-dependent protein kinase II activity, suggesting that disruption of calcium homeostasis plays a key part. We also described structural abnormalities in the mitochondria of BACHD-derived cardiomyocytes, indicative of oxidative stress. Consistent with this, imbalances in superoxide dismutase and glutathione peroxidase activities were detected. Our data provide an in vivo demonstration of cardiac abnormalities in HD together with new insights into the cellular mechanistic basis, providing a possible explanation for the higher cardiovascular risk in HD.


Subject(s)
Arrhythmias, Cardiac/pathology , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Disease Models, Animal , Huntington Disease/physiopathology , Mitochondria/pathology , Myocytes, Cardiac/pathology , Oxidative Stress , Animals , Antioxidants/metabolism , Arrhythmias, Cardiac/metabolism , Biomechanical Phenomena , Electrophysiological Phenomena , Mice , Mice, Transgenic , Mitochondria/metabolism , Myocytes, Cardiac/metabolism , Phosphorylation
SELECTION OF CITATIONS
SEARCH DETAIL
...