ABSTRACT
In the present study, the Hg levels in freshly collected polychaete species and their associated sediments were evaluated from Todos os Santos Bay, Northeastern Brazil. Additionally, it was also measured the Hg distribution along the annelids' body parts (anterior region, abdomen, and posterior region). Total Hg concentration was as follows: 13.6-144 µg kg-1 (Scolelepis chilensis, deposit feeder), 8.2-122 µg kg-1 (Laeonereis acuta, deposit feeder), 95-612 µg kg-1 (Armandia agilis, deposit feeder); 96.6-206 µg kg-1 (Lumbrineris sp., carnivorous), 75.3-112 µg kg-1 (Goniada echinulate, carnivorous), and 115-198 µg kg-1 (Branchiomma sp., suspension feeder). In turn, Hg levels in sediments ranged from 2.77 ± 0.24 to 6.38 ± 0.15 µg kg-1. Hg concentrations found in polychaete soft tissues were higher than those found in the sediments. Specific habits, feeding behavior, trophic level, and stressful environmental conditions are the main factors affecting the Hg levels in the species studied. The bioaccumulation factor (BAF), contamination factor (CF), and ecological risk assessment (Er) were calculated. The BAF values were higher than 1 for all studied species, indicating Hg bioaccumulation in the annelids, but the low levels of CF e Er showed those Hg levels present low to no significant ecological risk for the biota and benthonic organisms living in the sediments. Finally, no statistically significant difference was observed for Hg concentration levels along the polychaete body parts.
Subject(s)
Mercury , Polychaeta , Water Pollutants, Chemical , Animals , Atlantic Ocean , Bays , Environmental Monitoring , Geologic Sediments , Mercury/analysis , Water Pollutants, Chemical/analysisABSTRACT
In this paper, a method for the determination of mercury in phosphate fertilizers using slurry sampling and cold vapor atomic absorption spectrometry (CV QT AAS) is proposed. Because mercury (II) ions form strong complexes with phosphor compounds, the formation of metallic mercury vapor requires the presence of lanthanum chloride as a release agent. Thiourea increases the amount of mercury that is extracted from the solid sample to the liquid phase of the slurry. The method is established using two steps. First, the slurry is prepared using the sample, lanthanum chloride, hydrochloric acid solution and thiourea solution and is sonicated for 20 min. Afterward, mercury vapor is generated using an aliquot of the slurry in the presence of the hydrochloric acid solution and isoamylic alcohol with sodium tetrahydroborate solution as the reducing agent. The experimental conditions for slurry preparation were optimized using two-level full factorial design involving the factors: thiourea and lanthanum chloride concentrations and the duration of sonication. The method allows the determination of mercury by external calibration using aqueous standards with limits of detection and quantification of 2.4 and 8.2 µg kg(-1), respectively, and precision, expressed as relative standard deviation, of 6.36 and 5.81% for two phosphate fertilizer samples with mercury concentrations of 0.24 and 0.57 mg kg(-1), respectively. The accuracy was confirmed by the analysis of a certified reference material of phosphate fertilizer that was provided by the National Institute of Standards & Technology (NIST). The method was applied to determine mercury in six commercial samples of phosphate fertilizers. The mercury content varied from 33.97 to 209.28 µg kg(-1). These samples were also analyzed employing inductively coupled plasma mass spectrometry (ICP-MS). The ICP-MS results were consistent with the results from our proposed method.
Subject(s)
Fertilizers/analysis , Mercury/analysis , Organophosphates/chemistry , Spectrophotometry, Atomic/standards , Borohydrides/chemistry , Calibration , Cations, Divalent , Gases , Lanthanum/chemistry , Limit of Detection , Sonication , Spectrophotometry, Atomic/methods , Thiourea/chemistry , VolatilizationABSTRACT
A simple method has been developed to determine antimony and lead in pewter alloy cups produced in Brazil, using fast sequential determination by high-resolution continuum source flame atomic absorption spectrometry. The samples were dissolved in HCl and H(2)O(2), employing a cold finger system in order to avoid analyte losses. The main resonance line of lead at 217.001 nm and a secondary line of antimony at 212.739 nm were used. The limits of detection for lead and antimony were 0.02 and 5.7 mg L(-1), respectively. The trueness of the method was established by recovery tests and comparing the results obtained by the proposed method with those obtained by inductively coupled plasma optical emission spectrometry. The results were compared using a student's t-test and there was no significant difference at a 95% confidence interval. With the developed methods, it was possible to determine accurately antimony and lead in pewter samples. The lead concentration found in the analysed samples was around 1 mg g(-1), which means that they are not lead free; however, the content was below the maximum allowed level of 5 mg g(-1). The antimony content, which was found to be between 40 and 46 mg g(-1), is actually of greater concern, as antimony is known to be potentially toxic already at very low concentrations, although there is no legislation yet for this element.
Subject(s)
Alloys/chemistry , Antimony/chemistry , Food Packaging , Lead/chemistry , Spectrophotometry, Atomic/methodsABSTRACT
This paper presents the validation of a system for sample digestion using a digester block/cold finger to determine the lead content in vegetables by electrothermal atomic absorption spectrometry (ETAAS). After mineralization, lead contents were determined by ETAAS using a calibration curve based on aqueous standards prepared in 2.60 M nitric acid solutions containing 5 microg ammonium phosphate as chemical modifier. A pyrolysis temperature of 900 degrees C and atomization temperature of 2000 degrees C were used. This method allowed the determination of lead with a characteristic mass of 35 pg; LOD and LOQ of 0.6 and 2 nglg, respectively, were found. The precision was investigated in terms of reproducibility and repeatability. Reproducibility was estimated by analysis of nine different portions of a certified reference material (CRM) of spinach leaves, and the repeatability was determined through the analysis of nine aliquots of the same solution. The reproducibility and repeatability were found to be 4.27 and 2.94% RSD, respectively. The accuracy was confirmed by analysis of whole meal flour, spinach leaves, and orchard leaves CRMs, all furnished by the National Institute of Standards and Technology. Lead contents were measured using the newly developed technique in 11 different potato samples. The lead contents ranged from 12.80 to 69.27 ng/g, with an average value of 28.59 ng/g. These values were in agreement with data reported in the literature.
Subject(s)
Lead/chemistry , Spectrophotometry, Atomic/methods , Vegetables/chemistry , Environmental Pollutants/chemistry , Food Analysis/methods , Food Contamination , Reproducibility of ResultsABSTRACT
The homogeneity and stability of metals were tested in a candidate laboratory reference material of soy leaves. Inductively coupled plasma-optical emission spectrometry was used to quantify calcium, magnesium, manganese, iron, zinc, copper, and vanadium. A 6 kg amount of the material, which was dried, ground, and classified as mesh 60, was distributed among 100 bottles. The between-bottle homogeneity test was established by analyzing two subsamples from nine bottles. For the within-bottle test, five determinations of each element of a single bottle were performed. The stability test was performed at temperatures of -10, +27, and +40 degrees C, and after storage times of 4, 12, 24, and 52 weeks. The obtained results indicated that the material was homogeneous and stable under the conditions studied.
Subject(s)
Calcium , Glycine max , Plant Leaves/chemistry , Trace Elements , Calcium/analysis , Calcium/standards , Reference Standards , Glycine max/chemistry , Glycine max/standards , Spectrophotometry, Atomic , Time Factors , Trace Elements/analysis , Trace Elements/standardsABSTRACT
In this paper, we proposed a procedure for the determination of iron(II) and total iron in wine samples employing molecular absorption spectrophotometry. The ligand used is 2-(5-bromo-2-pyridylazo)-5-(diethylamino)-phenol (Br-PADAP) and the chromogenic reaction in absence or presence of ascorbic acid (reducing agent) allows the determination of iron(II) or total iron, respectively. The optimization step was performed using a multivariate technique (Box Behnken design) involving the factors pH, acid ascorbic concentration and reaction time. The method allows the determination of iron(II) and iron(III) in wine samples, with limits of detection and quantification 0.22 and 0.72 microg L(-1), respectively. The precision expressed as relative standard deviation (R.S.D.) was 1.43 and 0.56% (both, n=11) for content of iron(II) in wine samples of 1.68 and 4.65 mg L(-1), and 1.66 and 0.87% (both, n=11) for content of total iron in wine samples of 1.72 and 5.48 mg L(-1). This method was applied for determination of iron(II) and total iron in six different wine samples. In these, the iron(II) content varied from 0.76 to 4.65 mg L(-1) and from 1.01 to 5.48 mg L(-1) for total iron. The results obtained in the determination of total iron by Br-PADAP method were compared with those that were performed after complete acid digestion in open system and determination of total iron employing FAAS. The method of regression linear was used for comparison of these results and demonstrated that there is no significant difference between the results obtained with these two procedures.