Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Learn Behav ; 50(1): 45-54, 2022 03.
Article in English | MEDLINE | ID: mdl-34244975

ABSTRACT

The number of parvalbumin neurons can be modified by social, multisensory, and cognitive stimuli in both mammals and birds, but nothing is known about their plasticity in long-distance migratory shorebirds. Here, in the spotted sandpiper (Actitis macularius), we investigated the plasticity of parvalbumin neurons of two brain areas during this species' wintering period at a lower latitude. We compared individuals in a nonmigratory rest period (November-January) and premigration (May-July) period. We used parvalbumin as a marker for counting a subpopulation of inhibitory neurons in the hippocampal formation (HF), with the magnocellular nucleus of the tectal isthmus (IMC) as a control area. Because the HF is involved in learning and memory and social interaction and the IMC is essential for control of head, neck, and eye movements, we hypothesized that parvalbumin neurons would increase in the HF and remain unchanged in the IMC. We used an optical fractionator to estimate cell numbers. Compared with the nonmigratory rest birds, parvalbumin neuron count estimates in the premigration birds increased significantly in the HF but remained unchanged in IMC. We suggest that the greater number of parvalbuminergic neurons in the HF of A. macularius in the premigration period represents adaptive circuitry changes involved in the migration back to reproductive niches in the northern hemisphere.


Subject(s)
Charadriiformes , Parvalbumins , Animals , Birds , Charadriiformes/metabolism , Hippocampus/metabolism , Mammals/metabolism , Neurons , Parvalbumins/metabolism
2.
J Chem Neuroanat ; 108: 101805, 2020 10.
Article in English | MEDLINE | ID: mdl-32505650

ABSTRACT

Astrocytes are essential for lipid neuronal metabolism in long-distance uninterrupted migratory flights, when glucose is not available as the main source of energy. We previously demonstrated in Calidris pusilla that after uninterrupted 5 days transatlantic flight, astrocytes shrink and reduce its number in the hippocampal formation. Here we shifted our attention to the wintering period and tested the hypothesis that hippocampal astrocyte morphology of A interpres will change as the wintering period progresses towards the premigration window. To that end we used Arenaria interpres, which also crosses the Atlantic Ocean and reaches the mangroves of the Amazon River estuary for wintering. Birds were captured in September/October (closer to the arrival in the coast of Bragança, Para, Brazil for wintering) and in April/May (closer to the departure towards the breeding sites) and had their brains processed for selective GFAP-astrocyte immunolabeling. Three-dimensional reconstructions of the immunostained astrocytes were performed and morphological classification was done based on hierarchical cluster and discriminant analysis of multimodal morphometric features. We found two morphological phenotypes of astrocytes in the newcomers which differentially increased its morphological complexities as wintering period progresses towards the pre-migration window. Taken together, our findings demonstrate that the long-distance non-stop flight and wintering period differentially affected the two astrocytes morphotypes, suggesting distinct physiological roles for these cells. We suggest that morphological changes during the wintering period, may be part of the adaptive plasticity of the local hippocampal circuits of A. interpres in preparation for the long journey back to their breeding sites in the north hemisphere.


Subject(s)
Animal Migration/physiology , Astrocytes/cytology , Charadriiformes/physiology , Hippocampus/cytology , Animals , Cell Shape , Estuaries
SELECTION OF CITATIONS
SEARCH DETAIL