Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Total Environ ; 634: 1540-1553, 2018 Sep 01.
Article in English | MEDLINE | ID: mdl-29710652

ABSTRACT

By the end of this century higher temperatures and significantly reduced rainfall are projected for the Brazilian North and Northeast (NE) regions due to Global Warming. This study examines the impact of these long-term rainfall changes on the Brazilian Northeast's hydroelectric production. Various studies that use different IPCC models are examined in order to determine the average rainfall reduction by the year 2100 in comparison to baseline data from the end of the 20th century. It was found that average annual rainfall in the NE region could decrease by approximately 25-50% depending on the emissions scenario. Analysis of historical rainfall data in the São Francisco basin during the last 57years already shows a decline of more than 25% from the 1961-90 long-term average. Moreover, average annual rainfall in the basin has been below its long-term average every year bar one since 1992. If this declining trend continues, rainfall reduction in the basin could be even more severe than the most pessimistic model projections. That is, the marked drop in average rainfall projected for 2100, based on the IPCC high emissions scenario, could actually eventuate before 2050. Due to the elasticity factor between rainfall and streamflow and because of increased amounts of irrigation in the São Francisco basin, the reduction in the NE's average hydroelectric production in the coming decades could be double the predicted decline in rainfall. Conversely, it is estimated that wind power potential in the Brazilian NE will increase substantially by 2100. Therefore both wind and solar power will need to be significantly exploited in order for the NE region to sustainably replace lost hydroelectric production.

2.
Mamm Genome ; 23(5-6): 387-98, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22290452

ABSTRACT

In most mammals the growth hormone (GH) locus comprises a single gene expressed primarily in the anterior pituitary gland. However, in higher primates multiple duplications of the GH gene gave rise to a complex locus containing several genes. In man this locus comprises five genes, including GH-N (expressed in pituitary) and four genes expressed in the placenta, but in other species the number and organization of these genes vary. The situation in chimpanzee has been unclear, with suggestions of up to seven GH-like genes. We have re-examined the GH locus in chimpanzee and have deduced the complete sequence. The locus includes five genes apparently organized in a fashion similar to that in human, with two of these genes encoding GH-like proteins, and three encoding chorionic somatomammotropins/placental lactogens (CSHs/PLs). There are notable differences between the human and chimpanzee loci with regard to the expressed proteins, gene regulation, and gene conversion events. In particular, one human gene (hCSH-L) has changed substantially since the chimpanzee/human split, potentially becoming a pseudogene, while the corresponding chimpanzee gene (CSH-A1) has been conserved, giving a product almost identical to the adjacent CSH-A2. Chimpanzee appears to produce two CSHs, with potentially differing biological properties, whereas human produces a single CSH. The pattern of gene conversion in human has been quite different from that in chimpanzee. The region around the GH-N gene in chimpanzee is remarkably polymorphic, unlike the corresponding region in human. The results shed new light on the complex evolution of the GH locus in higher primates.


Subject(s)
Evolution, Molecular , Growth Hormone/genetics , Pan troglodytes/genetics , Amino Acid Sequence , Animals , Base Sequence , Genetic Loci , Growth Hormone/chemistry , Human Growth Hormone/genetics , Humans , Male , Molecular Sequence Data , Multigene Family , Phylogeny , Primates/classification , Primates/genetics , Sequence Alignment
3.
Gene ; 380(1): 38-45, 2006 Sep 15.
Article in English | MEDLINE | ID: mdl-16872758

ABSTRACT

While most mammals including the prosimians have a single copy of the growth hormone (GH) gene, anthropoids possess a cluster of GH-related genes. Throughout the evolution of the main anthropoid groups [New World Monkeys (NWM), Old World Monkeys (OWM), and apes], two features stand out of the GH loci. The first is the appearance of chorionic somatommamotropin hormone (CSH) genes within the OWM lineage and the second is the expansion of the loci intergenic regions in the OWM and apes. In relation with this loci expansion, the NWM possess intergenic regions of homogeneous lengths (3.5 kb). In contrast, heterogeneous lengths (6 and 13 kb) have been reported for species of the OWM. At the present, none of the OWM genomic GH loci organizations have been described. Here, we report the genomic organization of the GH locus in the rhesus monkey, this locus has six GH-related genes separated by five intergenic regions. The 5' end gene (GH-1) encodes for the pituitary GH and is followed by CSH-1, GH-2, CSH-2, CSH-3 and CSH-4 genes. The five intergenic regions have heterogeneous lengths and also present more or less the same Alu distribution as the human GH locus. To analyze the events that contributed to the extension of the intergenic regions of the GH locus and the emergence of the regulatory elements, the five GH locus intergenic regions of the spider monkey (NWM) were sequenced. The results of comparing the loci from both species suggest that the long intergenic regions (13 kb) of the rhesus GH locus share a common ancestor with the 3.5 kb intergenic regions of the spider monkey. However, the observed increased length of the former is due to an insertion (approximately 8.7 kb) at their 3' end. Interestingly in this insert, we discovered a DNA element resembling the enhancer of the CSH genes of the human GH locus. On the other hand, we observed that the short intergenic regions (6 kb) increased by a different recombination event.


Subject(s)
Cercopithecidae/genetics , Evolution, Molecular , Growth Hormone/genetics , Platyrrhini/genetics , Alu Elements , Animals , Base Sequence , Cebidae/genetics , Cercopithecidae/classification , Cloning, Molecular , DNA/genetics , DNA Primers/genetics , DNA, Intergenic , Gene Duplication , Genes, Regulator , Humans , Macaca mulatta/genetics , Molecular Sequence Data , Multigene Family , Platyrrhini/classification , Recombination, Genetic , Sequence Homology, Nucleic Acid , Species Specificity , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL