Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 98
Filter
Add more filters











Publication year range
2.
Pharmacopsychiatry ; 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39187245

ABSTRACT

BACKGROUND: Currently, guidance on the most effective treatment for patients with clozapine-resistant schizophrenia-spectrum disorders (SSD) is lacking. While augmentation strategies to clozapine with aripiprazole and electroconvulsive therapy (ECT) have been demonstrated to be effective in patients with clozapine-resistant schizophrenia spectrum disorders (CRS), head-to-head comparisons between these addition strategies are unavailable. We therefore aim to examine the feasibility of a larger randomized, single-blind trial comparing the effectiveness, cost-effectiveness, and safety of aripiprazole addition vs. ECT addition in CRS. METHODS: In this multi-center, randomized, single-blind feasibility study, the feasibility of recruiting 20 participants with CRS who will be randomized to either aripiprazole or bilateral ECT addition will be assessed. The main endpoint is the number of patients willing to be randomized. The number of screened individuals and reasons to decline participation will be recorded. Effects will be estimated for the benefit of the foreseen larger trial. To that end, differences between both arms in symptom severity will be assessed using blinded video assessments. In addition, tolerability (e. g., cognitive functioning), safety, quality of life, recovery, and all-cause discontinuation will be compared. The follow-up period is 16 weeks, after which non-responders will be given the option to switch to the other treatment. DISCUSSION: Strengths of this feasibility trial include maintaining blinding with video assessment, a possibility to switch groups in case of non-response, and a broad set of outcome measures. Identification of factors contributing to non-participation and drop-out will generate valuable information on trial feasibility and may enhance recruitment strategies in a follow-up RCT. TRIAL REGISTRATION: The study has been approved by the Medical Research Ethics Committee of the Amsterdam University Medical Center, location AMC, and was registered on 1 May 2022 in the EU Clinical Trials Register (EudraCT) under the trial name 'EMECLO' (2021-006333-19).

3.
Sci Total Environ ; 890: 164420, 2023 Sep 10.
Article in English | MEDLINE | ID: mdl-37236451

ABSTRACT

A wide range of PFAS residues were studied in an aquifer used for drinking water production which was affected by historical PFAS contamination from a landfill and military camp. Samples were taken at three monitoring and four pumping wells at different depths ranging from 33 to 147 m below the land surface and analysed for a series of 53 PFAS (C2-C14) and PFAS precursors (C4-C24). A comparison of results to earlier research from 2013, with a more limited range of PFAS, showed decreasing concentrations and migration of PFAS with increasing depth and distance from the contamination source. The PFAS profile and branched/linear isomer ratio are used as source characterization tools. The landfill was confirmed to contaminate the groundwater in both monitoring wells, while the military camp was indicated as a probable source for PFAS observed in the deep sampling points of one of the monitoring wells. Pumping wells used to produce drinking water are not yet affected by these two PFAS sources. In one of the four sampled pumping wells, a different PFAS profile and isomer pattern was observed, which indicated a different but yet unknown source. This work shows the necessity of implementing regular screening to identify potential (historical) PFAS sources to be able to prevent future contaminant migration nearby and towards drinking water abstraction wells.


Subject(s)
Drinking Water , Fluorocarbons , Groundwater , Water Pollutants, Chemical , Drinking Water/chemistry , Environmental Monitoring , Water Pollutants, Chemical/analysis , Groundwater/chemistry , Fluorocarbons/analysis
4.
J Synchrotron Radiat ; 30(Pt 1): 147-168, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36601934

ABSTRACT

The most accurate measurements of the mass attenuation coefficient for metals at low temperature for the zinc K-edge from 9.5 keV to 11.5 keV at temperatures of 10 K, 50 K, 100 K and 150 K using the hybrid technique are reported. This is the first time transition metal X-ray absorption fine structure (XAFS) has been studied using the hybrid technique and at low temperatures. This is also the first hybrid-like experiment at the Australian Synchrotron. The measured transmission and fluorescence XAFS spectra are compared and benchmarked against each other with detailed systematic analyses. A recent method for modelling self-absorption in fluorescence has been adapted and applied to a solid sample. The XAFS spectra are analysed using eFEFFIT to provide a robust measurement of the evolution of nanostructure, including such properties as net thermal expansion and mean-square relative displacement. This work investigates crystal dynamics, nanostructural evolution and the results of using the Debye and Einstein models to determine atomic positions. Accuracies achieved, when compared with the literature, exceed those achieved by both relative and differential XAFS, and represent a state-of-the-art for future structural investigations. Bond length uncertainties are of the order of 20-40 fm.

5.
Psychol Med ; 53(6): 2317-2327, 2023 04.
Article in English | MEDLINE | ID: mdl-34664546

ABSTRACT

BACKGROUND: Cognitive deficits may be characteristic for only a subgroup of first-episode psychosis (FEP) and the link with clinical and functional outcomes is less profound than previously thought. This study aimed to identify cognitive subgroups in a large sample of FEP using a clustering approach with healthy controls as a reference group, subsequently linking cognitive subgroups to clinical and functional outcomes. METHODS: 204 FEP patients were included. Hierarchical cluster analysis was performed using baseline brief assessment of cognition in schizophrenia (BACS). Cognitive subgroups were compared to 40 controls and linked to longitudinal clinical and functional outcomes (PANSS, GAF, self-reported WHODAS 2.0) up to 12-month follow-up. RESULTS: Three distinct cognitive clusters emerged: relative to controls, we found one cluster with preserved cognition (n = 76), one moderately impaired cluster (n = 74) and one severely impaired cluster (n = 54). Patients with severely impaired cognition had more severe clinical symptoms at baseline, 6- and 12-month follow-up as compared to patients with preserved cognition. General functioning (GAF) in the severely impaired cluster was significantly lower than in those with preserved cognition at baseline and showed trend-level effects at 6- and 12-month follow-up. No significant differences in self-reported functional outcome (WHODAS 2.0) were present. CONCLUSIONS: Current results demonstrate the existence of three distinct cognitive subgroups, corresponding with clinical outcome at baseline, 6- and 12-month follow-up. Importantly, the cognitively preserved subgroup was larger than the severely impaired group. Early identification of discrete cognitive profiles can offer valuable information about the clinical outcome but may not be relevant in predicting self-reported functional outcomes.


Subject(s)
Cognitive Dysfunction , Psychotic Disorders , Schizophrenia , Humans , Psychotic Disorders/psychology , Cognitive Dysfunction/etiology , Cognition , Cluster Analysis , Neuropsychological Tests
6.
Article in English | MEDLINE | ID: mdl-33649114

ABSTRACT

Intravenous administration of the last-line polymyxins results in poor drug exposure in the lungs and potential nephrotoxicity; while inhalation therapy offers better pharmacokinetics/pharmacodynamics for pulmonary infections by delivering the antibiotic to the infection site directly. However, polymyxin inhalation therapy has not been optimized and adverse effects can occur. This study aimed to quantitatively determine the intracellular accumulation and distribution of polymyxins in single human alveolar epithelial A549 cells. Cells were treated with an iodine-labeled polymyxin probe FADDI-096 (5.0 and 10.0 µM) for 1, 4, and 24 h. Concentrations of FADDI-096 in single A549 cells were determined by synchrotron-based X-ray fluorescence microscopy. Concentration- and time-dependent accumulation of FADDI-096 within A549 cells was observed. The intracellular concentrations (mean ± SEM, n ≥ 189) of FADDI-096 were 1.58 ± 0.11, 2.25 ± 0.10, and 2.46 ± 0.07 mM following 1, 4 and 24 h of treatment at 10 µM, respectively. The corresponding intracellular concentrations following the treatment at 5 µM were 0.05 ± 0.01, 0.24 ± 0.04, and 0.25 ± 0.02 mM (n ≥ 189). FADDI-096 was mainly localized throughout the cytoplasm and nuclear region over 24 h. The intracellular zinc concentration increased in a concentration- and time-dependent manner. This is the first study to quantitatively map the accumulation of polymyxins in human alveolar epithelial cells and provides crucial insights for deciphering the mechanisms of their pulmonary toxicity. Importantly, our results may shed light on the optimization of inhaled polymyxins in patients and the development of new-generation safer polymyxins.

7.
Metallomics ; 14(5)2022 06 23.
Article in English | MEDLINE | ID: mdl-35746898

ABSTRACT

The molecular biology and genetics of the Ni-Cd-Zn hyperaccumulator Noccaea caerulescens has been extensively studied, but no information is yet available on Ni and Zn redistribution and mobilization during seed germination. Due to the different physiological functions of these elements, and their associated transporter pathways, we expected differential tissue distribution and different modes of translocation of Ni and Zn during germination. This study used synchrotron X-ray fluorescence tomography techniques as well as planar elemental X-ray imaging to elucidate elemental (re)distribution at various stages of the germination process in contrasting accessions of N. caerulescens. The results show that Ni and Zn are both located primarily in the cotyledons of the emerging seedlings and Ni is highest in the ultramafic accessions (up to 0.15 wt%), whereas Zn is highest in the calamine accession (up to 600 µg g-1). The distribution of Ni and Zn in seeds was very similar, and neither element was translocated during germination. The Fe maps were especially useful to obtain spatial reference within the seeds, as it clearly marked the vasculature. This study shows how a multimodal combination of synchrotron techniques can be used to obtain powerful insights about the metal distribution in physically intact seeds and seedlings.


Subject(s)
Brassicaceae , Cadmium , Brassicaceae/metabolism , Cadmium/metabolism , Optical Imaging , Seedlings/metabolism , Seeds/metabolism , Synchrotrons , X-Rays , Zinc/metabolism
8.
Metallomics ; 14(5)2022 05 13.
Article in English | MEDLINE | ID: mdl-35556136

ABSTRACT

Globally, the majority of Ni hyperaccumulator plants occur on ultramafic soils in tropical regions, and the genus Phyllanthus, from the Phyllanthaceae family, is globally the most represented taxonomical group. Two species from Sabah (Malaysia) are remarkable because Phyllanthus balgooyi can attain >16 wt% of Ni in its phloem exudate, while Phyllanthus rufuschaneyi reaches foliar concentrations of up to 3.5 wt% Ni, which are amongst the most extreme concentrations of Ni in any plant tissue. Synchrotron X-ray fluorescence microscopy, nuclear microbe (micro-PIXE+BS) and (cryo) scanning electron microscopy with energy dispersive spectroscopy were used to spatially resolve the elemental distribution in the plant organs of P. balgooyi and P. rufuschaneyi. The results show that P. balgooyi has extraordinary enrichment of Ni in the (secondary) veins of the leaves, whereas in contrast, in P. rufuschaneyi Ni occurs in interveinal areas. In the roots and stems, Ni is localized mainly in the cortex and phloem but is much lower in the xylem. The findings of this study show that, even within the same genus, the distribution of nickel and other elements, and inferred processes involved with metal hyperaccumulation, can differ substantially between species.


Subject(s)
Nickel , Phyllanthus , Borneo , Nickel/analysis , Phloem , Soil
9.
J Synchrotron Radiat ; 29(Pt 2): 480-487, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35254312

ABSTRACT

Over the last decade ptychography has progressed rapidly from a specialist ultramicroscopy technique into a mature method accessible to non-expert users. However, to improve scientific value ptychography data must reconstruct reliably, with high image quality and at no cost to other correlative methods. Presented here is the implementation of high-speed ptychography used at the Australian Synchrotron on the XFM beamline, which includes a free-run data collection mode where dead time is eliminated and the scan time is optimized. It is shown that free-run data collection is viable for fast and high-quality ptychography by demonstrating extremely high data rate acquisition covering areas up to 352 000 µm2 at up to 140 µm2 s-1, with 13× spatial resolution enhancement compared with the beam size. With these improvements, ptychography at velocities up to 250 µm s-1 is approaching speeds compatible with fast-scanning X-ray fluorescence microscopy. The combination of these methods provides morphological context for elemental and chemical information, enabling unique scientific outcomes.


Subject(s)
Microscopy , Synchrotrons , Australia , Microscopy/methods
10.
J Synchrotron Radiat ; 28(Pt 5): 1476-1491, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34475295

ABSTRACT

The first X-ray Extended Range Technique (XERT)-like experiment at the Australian Synchrotron, Australia, is presented. In this experiment X-ray mass attenuation coefficients are measured across an energy range including the zinc K-absorption edge and X-ray absorption fine structure (XAFS). These high-accuracy measurements are recorded at 496 energies from 8.51 keV to 11.59 keV. The XERT protocol dictates that systematic errors due to dark current nonlinearities, correction for blank measurements, full-foil mapping to characterize the absolute value of attenuation, scattering, harmonics and roughness are measured over an extended range of experimental parameter space. This results in data for better analysis, culminating in measurement of mass attenuation coefficients across the zinc K-edge to 0.023-0.036% accuracy. Dark current corrections are energy- and structure-dependent and the magnitude of correction reached 57% for thicker samples but was still large and significant for thin samples. Blank measurements scaled thin foil attenuation coefficients by 60-500%; and up to 90% even for thicker foils. Full-foil mapping and characterization corrected discrepancies between foils of up to 20%, rendering the possibility of absolute measurements of attenuation. Fluorescence scattering was also a major correction. Harmonics, roughness and bandwidth were explored. The energy was calibrated using standard reference foils. These results represent the most extensive and accurate measurements of zinc which enable investigations of discrepancies between current theory and experiments. This work was almost fully automated from this first experiment at the Australian Synchrotron, greatly increasing the possibility for large-scale studies using XERT.

11.
J Synchrotron Radiat ; 28(Pt 5): 1492-1503, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34475296

ABSTRACT

High-accuracy X-ray mass attenuation coefficients were measured from the first X-ray Extended Range Technique (XERT)-like experiment at the Australian Synchrotron. Experimentally measured mass attenuation coefficients deviate by ∼50% from the theoretical values near the zinc absorption edge, suggesting that improvements in theoretical tabulations of mass attenuation coefficients are required to bring them into better agreement with experiment. Using these values the imaginary component of the atomic form factor of zinc was determined for all the measured photon energies. The zinc K-edge jump ratio and jump factor are determined and results raise significant questions regarding the definitions of quantities used and best practice for background subtraction prior to X-ray absorption fine-structure (XAFS) analysis. The XAFS analysis shows excellent agreement between the measured and tabulated values and yields bond lengths and nanostructure of zinc with uncertainties of from 0.1% to 0.3% or 0.003 Što 0.008 Å. Significant variation from the reported crystal structure was observed, suggesting local dynamic motion of the standard crystal lattice. XAFS is sensitive to dynamic correlated motion and in principle is capable of observing local dynamic motion beyond the reach of conventional crystallography. These results for the zinc absorption coefficient, XAFS and structure are the most accurate structural refinements of zinc at room temperature.

12.
Food Res Int ; 147: 110528, 2021 09.
Article in English | MEDLINE | ID: mdl-34399506

ABSTRACT

Lactobacillus spp. are known to accumulate large amounts of inorganic manganese, which protects against oxidative damage by scavenging free radicals. The ability of probiotic L. paracasei ATCC 55544 to maintain viability during long-term ambient storage may be enhanced by this microorganism's ability to accumulate manganese, which may act as a free radical scavenger. To investigate this hypothesis, X-ray fluorescence microscopy (XFM) was employed to determine the changes in the elemental composition of L. paracasei during growth in the MRS medium with or without added manganese. Moreover, manganese uptake by cells as a function of physiological growth state, early log vs. stationary phase was evaluated. The semiquantitative X-ray fluorescence microscopy results revealed that lower levels of manganese accumulation occurred during the early log phase of bacterial growth of L. paracasei cells (0.0064 µg/cm2) compared with the stationary phase cells (0.1355 µg/cm2). L. paracasei cells grown in manganese deficient MRS medium resulted in lower manganese uptake by cells (0.0027 µg/cm2). The L. paracasei cells were further embedded in milk powder matrix using a fluidized-bed drying technique and stored at a water activity (aw) of 0.33 at 25 °C for 15 days. The viability counts of L. paracasei cells grown in MRS medium harvested after 18 h growth and embedded in milk powder matrix retained viability of (9.19 ± 0.12 log CFU/g). No viable L. paracasei cells were observed in the case of embedded L. paracasei cells grown in manganese-deficient MRS medium harvested after 18 h growth or in the case of L. paracasei cells harvested after 4 h when grown in MRS medium. The lower level of manganese accumulation was found to be related to the loss of bacterial viability during storage.


Subject(s)
Lacticaseibacillus paracasei , Probiotics , Manganese , Microbial Viability , Microscopy, Fluorescence , Synchrotrons , X-Rays
13.
Yakugaku Zasshi ; 141(6): 835-842, 2021.
Article in Japanese | MEDLINE | ID: mdl-34078791

ABSTRACT

Dementia has no cure and is an international health crisis. In addition to the immeasurable loss of QOL caused by dementia, the global economic cost is predicted to reach $2 trillion (USD) by 2030. Although much remains unknown about the biochemical pathways driving cognitive decline and memory loss during dementia, metals have been implicated in neurodegenerative disease. For example, total levels of Fe and Cu increase, which has been proposed to drive oxidative stress; and Fe, Cu, and Zn can bind amyloid-ß, catalysing aggregation and formation of amyloid plaques. Unfortunately, despite these known facets through which metal ions may induce pathology, studies in greater detail have been hampered by a lack of microscopy methods to directly visualise metal ions, and their chemical form, within brain cells. Herein we report the use of synchrotron X-ray fluorescence microscopy to simultaneously image Fe, Cu, and Zn within neurons in ex vivo brain tissue sections. Using animal models of dementia, we now demonstrate for the first time that despite global increases in brain metal content and metal ion accumulation within amyloid plaques, key brain regions may also become metal ion deficient. Such deficiency could contribute to cognitive decline because of the essential roles metal ions play in neurotransmitter synthesis and energy metabolism. These recent findings are discussed in the context of memory loss, and the impact that metal ion dis-homeostasis may have on diagnostic and therapeutic development.


Subject(s)
Dementia/etiology , Dementia/metabolism , Hippocampus/metabolism , Metals/metabolism , Amyloid beta-Peptides/metabolism , Animals , Copper/metabolism , Dementia/psychology , Disease Models, Animal , Energy Metabolism , Humans , Ions , Iron/metabolism , Memory , Mice , Microscopy, Fluorescence , Neurotransmitter Agents/metabolism , Protein Binding , Proteostasis Deficiencies/etiology , Zinc/metabolism
14.
Metallomics ; 12(12): 2134-2144, 2020 12 23.
Article in English | MEDLINE | ID: mdl-33300524

ABSTRACT

Zinc is a prominent trace metal required for normal memory function. Memory loss and cognitive decline during natural ageing and neurodegenerative disease have been associated with altered brain-Zn homeostasis. Yet, the exact chemical pathways through which Zn influences memory function during health, natural ageing, or neurodegenerative disease remain unknown. The gap in the literature may in part be due to the difficulty to simultaneously image, and therefore, study the different chemical forms of Zn within the brain (or biological samples in general). To this extent, we have begun developing and optimising protocols that incorporate X-ray absorption near-edge structure (XANES) spectroscopic analysis of tissue at the Zn K-edge as an analytical tool to study Zn speciation in the brain. XANES is ideally suited for this task as all chemical forms of Zn are detected, the technique requires minimal sample preparation that may otherwise redistribute or alter the chemical form of Zn, and the Zn K-edge has known sensitivity to coordination geometry and ligand type. Herein, we report our initial results where we fit K-edge spectra collected from micro-dissected flash-frozen brain tissue, to a spectral library prepared from standard solutions, to demonstrate differences in the chemical form of Zn that exist between two brain regions, the hippocampus and cerebellum. Lastly, we have used an X-ray microprobe to demonstrate differences in Zn speciation within sub-regions of thin air-dried sections of the murine hippocampus; but, the corresponding results highlight that the chemical form of Zn is easily perturbed by sample preparation such as tissue sectioning or air-drying, which must be a critical consideration for future work.


Subject(s)
Brain Chemistry , Zinc/analysis , Animals , Cations, Divalent/analysis , Male , Rats, Sprague-Dawley , X-Ray Absorption Spectroscopy
15.
J Synchrotron Radiat ; 27(Pt 5): 1447-1458, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32876622

ABSTRACT

The X-ray fluorescence microscopy (XFM) beamline is an in-vacuum undulator-based X-ray fluorescence (XRF) microprobe beamline at the 3 GeV Australian Synchrotron. The beamline delivers hard X-rays in the 4-27 keV energy range, permitting K emission to Cd and L and M emission for all other heavier elements. With a practical low-energy detection cut-off of approximately 1.5 keV, low-Z detection is constrained to Si, with Al detectable under favourable circumstances. The beamline has two scanning stations: a Kirkpatrick-Baez mirror microprobe, which produces a focal spot of 2 µm × 2 µm FWHM, and a large-area scanning `milliprobe', which has the beam size defined by slits. Energy-dispersive detector systems include the Maia 384, Vortex-EM and Vortex-ME3 for XRF measurement, and the EIGER2 X 1 Mpixel array detector for scanning X-ray diffraction microscopy measurements. The beamline uses event-mode data acquisition that eliminates detector system time overheads, and motion control overheads are significantly reduced through the application of an efficient raster scanning algorithm. The minimal overheads, in conjunction with short dwell times per pixel, have allowed XFM to establish techniques such as full spectroscopic XANES fluorescence imaging, XRF tomography, fly scanning ptychography and high-definition XRF imaging over large areas. XFM provides diverse analysis capabilities in the fields of medicine, biology, geology, materials science and cultural heritage. This paper discusses the beamline status, scientific showcases and future upgrades.

16.
Environ Sci Technol ; 54(2): 745-757, 2020 01 21.
Article in English | MEDLINE | ID: mdl-31891245

ABSTRACT

The fern Pteris vittata has been the subject of numerous studies because of its extreme arsenic hyperaccumulation characteristics. However, information on the arsenic chemical speciation and distribution across cell types within intact frozen-hydrated Pteris vittata fronds is necessary to better understand the arsenic biotransformation pathways in this unusual fern. While 2D X-ray absorption spectroscopy imaging studies show that different chemical forms of arsenic, As(III) and As(V), occur across the plant organs, depth-resolved information on arsenic distribution and chemical speciation in different cell types within tissues of Pteris vittata have not been reported. By using a combination of planar and confocal µ-X-ray fluorescence imaging and fluorescence computed µ-tomography, we reveal, in this study, the localization of arsenic in the endodermis and pericycle surrounding the vascular bundles in the rachis and the pinnules of the fern. Arsenic is also accumulated in the vascular bundles connecting into each sporangium, and in some mature sori. The use of 2D X-ray absorption near edge structure imaging allows for deciphering arsenic speciation across the tissues, revealing arsenate in the vascular bundles and arsenite in the endodermis and pericycle. This study demonstrates how different advanced synchrotron X-ray microscopy techniques can be complementary in revealing, at tissue and cellular levels, elemental distribution and chemical speciation in hyperaccumulator plants.


Subject(s)
Arsenic , Pteris , Soil Pollutants , Tomography, X-Ray Computed , X-Ray Absorption Spectroscopy
17.
Aquat Toxicol ; 217: 105330, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31704581

ABSTRACT

Heavy metal pollution is a concern in many coastal locations where it is frequently deleterious to the survival of young shellfish. Consequently, a great number of commercial shellfish hatcheries around the world rely on the addition of ethylenediaminetetraacetic acid (EDTA) to seawater to ensure successful larval production. Despite the importance of this practice to global shellfish production the mode of action of EDTA in larval production remains undetermined. It is assumed EDTA chelates heavy metals in seawater preventing interference in larval development. Larval mussels (Perna canaliculus) raised in seawater with 3 µM EDTA had a 15 fold higher yield than those without EDTA. The concentration and spatial arrangement of heavy metals in larvae as determined by Inductively Coupled Plasma Mass Spectrometry (ICPMS) and X-ray Fluorescence Microscopy (XFM) was consistent with reduced bioavailability of several metals, especially copper and zinc. This is the first study to confirm the effectiveness of EDTA for managing metal pollution commonly encountered in coastal shellfish hatcheries.


Subject(s)
Edetic Acid/pharmacology , Metals, Heavy/toxicity , Perna/growth & development , Seawater/chemistry , Water Pollutants, Chemical/toxicity , Animals , Chelating Agents , Environmental Pollution/analysis , Larva/drug effects , Metals, Heavy/analysis
18.
Analyst ; 144(24): 7318-7325, 2019 Dec 02.
Article in English | MEDLINE | ID: mdl-31701960

ABSTRACT

Electrochemical water splitting to generate hydrogen has been identified as a possible solution to the storage of intermittent renewable energy. However there are still challenges remaining in the development of stable electrocatalysts for the oxygen evolution half-reaction. Here we investigate the effects that the oxygen evolution reaction (OER) has on an electrodeposited Ni(OH)2 catalyst operated under alkaline conditions. The electrocatalyst was characterised by established methods including cyclic voltammetry, electrochemical impedance spectroscopy, scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy both before and after the OER to identify changes that may have occurred in the structure and/or composition of the catalyst. In addition, synchrotron X-ray absorption near edge structure mapping was used to generate spatially resolved maps of the species present within the Ni(OH)2 catalyst and how they change in a heterogeneous manner into a NiO species after the OER. When compared to the morphological data it suggests that changes in the morphology after the OER can be correlated to the formation of NiO within the newly formed clusters that were generated across the electrocatalyst.

19.
Environ Sci Technol ; 53(19): 11486-11495, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31460750

ABSTRACT

Lead (Pb) exposure from household dust is a major childhood health concern because of its adverse impact on cognitive development. This study investigated the absorption kinetics of Pb from indoor dust following a single dose instillation into C57BL/6 mice. Blood Pb concentration (PbB) was assessed over 24 h, and the dynamics of particles in the lung and gastro-intestinal (GI) tract were visualized using X-ray fluorescence (XRF) microscopy. The influence of mineralogy on Pb absorption and particle retention was investigated using X-ray absorption near-edge structure spectroscopy. A rapid rise in PbB was observed between 0.25 and 4 h after instillation, peaking at 8 h and slowly declining during a period of 24 h. Following clearance from the lungs, Pb particles were detected in the stomach and small intestine at 4 and 8 h, respectively. Analysis of Pb mineralogy in the residual particles in tissues at 8 h showed that mineral-sorbed Pb and Pb-phosphates dominated the lung, while organic-bound Pb and galena were the main phases in the small intestines. This is the first study to visualize Pb dynamics in the lung and GI tract using XRF microscopy and link the inhalation and ingestion pathways for metal exposure assessment from dust.


Subject(s)
Dust , Animals , Biological Availability , Mice , Mice, Inbred C57BL , X-Ray Absorption Spectroscopy , X-Rays
20.
Environ Sci Technol ; 53(17): 10329-10341, 2019 Sep 03.
Article in English | MEDLINE | ID: mdl-31356748

ABSTRACT

This study compared lead (Pb) immobilization efficacies in mining/smelting impacted soil using phosphate and iron amendments via ingestion and inhalation pathways using in vitro and in vivo assays, in conjunction with investigating the dynamics of dust particles in the lungs and gastro-intestinal tract via X-ray fluorescence (XRF) microscopy. Phosphate amendments [phosphoric acid (PA), hydroxyapatite, monoammonium phosphate (MAP), triple super phosphate (TSP), and bone meal biochar] and hematite were applied at a molar ratio of Pb:Fe/P = 1:5. Pb phosphate formation was investigated in the soil/post-in vitro bioaccessibility (IVBA) residuals and in mouse lung via extended X-ray absorption fine structure (EXAFS) and X-ray absorption near edge structures (XANES) spectroscopy, respectively. EXAFS analysis revealed that anglesite was the dominant phase in the ingestible (<250 µm) and inhalable (<10 µm) particle fractions. Pb IVBA was significantly reduced (p < 0.05) by phosphate amendments in the <250 µm fraction (solubility bioaccessibility research consortium assay) and by PA, MAP, and TSP in the <10 µm fraction (inhalation-ingestion bioaccessibility assay). A 21.1% reduction in Pb RBA (<250 µm fraction) and 56.4% reduction in blood Pb concentration (<10 µm fraction) were observed via the ingestion and inhalation pathways, respectively. XRF microscopy detected Pb in the stomach within 4 h, presumably via mucociliary clearance.


Subject(s)
Soil Pollutants , Animals , Biological Availability , Iron , Mice , Phosphates , Soil
SELECTION OF CITATIONS
SEARCH DETAIL