Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Plants (Basel) ; 13(5)2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38475529

ABSTRACT

During plant development, mobile proteins, including transcription factors, abundantly serve as messengers between cells to activate transcriptional signaling cascades in distal tissues. These proteins travel from cell to cell via nanoscopic tunnels in the cell wall known as plasmodesmata. Cellular control over this intercellular movement can occur at two likely interdependent levels. It involves regulation at the level of plasmodesmata density and structure as well as at the level of the cargo proteins that traverse these tunnels. In this review, we cover the dynamics of plasmodesmata formation and structure in a developmental context together with recent insights into the mechanisms that may control these aspects. Furthermore, we explore the processes involved in cargo-specific mechanisms that control the transport of proteins via plasmodesmata. Instead of a one-fits-all mechanism, a pluriform repertoire of mechanisms is encountered that controls the intercellular transport of proteins via plasmodesmata to control plant development.

2.
Mol Plant Microbe Interact ; 37(2): 84-92, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37942798

ABSTRACT

In plants, plasmodesmata establish cytoplasmic continuity between cells to allow for communication and resource exchange across the cell wall. While plant pathogens use plasmodesmata as a pathway for both molecular and physical invasion, the benefits of molecular invasion (cell-to-cell movement of pathogen effectors) are poorly understood. To establish a methodology for identification and characterization of the cell-to-cell mobility of effectors, we performed a quantitative live imaging-based screen of candidate effectors of the fungal pathogen Colletotrichum higginsianum. We predicted C. higginsianum effectors by their expression profiles, the presence of a secretion signal, and their predicted and in planta localization when fused to green fluorescent protein. We assayed for cell-to-cell mobility of nucleocytosolic effectors and identified 14 that are cell-to-cell mobile. We identified that three of these effectors are "hypermobile," showing cell-to-cell mobility greater than expected for a protein of that size. To explore the mechanism of hypermobility, we chose two hypermobile effectors and measured their impact on plasmodesmata function and found that even though they show no direct association with plasmodesmata, each increases the transport capacity of plasmodesmata. Thus, our methods for quantitative analysis of cell-to-cell mobility of candidate microbe-derived effectors, or any suite of host proteins, can identify cell-to-cell hypermobility and offer greater understanding of how proteins affect plasmodesmal function and intercellular connectivity. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Subject(s)
Plants , Plasmodesmata , Plasmodesmata/metabolism , Plants/metabolism , Cytoplasm , Cytosol , Cell Wall
3.
J Cell Biol ; 222(9)2023 09 04.
Article in English | MEDLINE | ID: mdl-37389658

ABSTRACT

Tip-growing cells of, amongst others, plants and fungi secrete wall materials in a highly polarized fashion for fast and efficient colonization of the environment. A polarized microtubule cytoskeleton, in which most microtubule ends are directed toward the growing apex, has been implicated in directing growth. Its organizing principles, in particular regarding maintenance of network unipolarity, have remained elusive. We show that a kinesin-4 protein, hitherto best known for a role in cytokinesis, suppresses encounters between antiparallel microtubules. Without this activity, microtubules hyper-aligned along the growth axis and increasingly grew away from the apex. Cells themselves displayed an overly straight growth path and a delayed gravitropic response. This result revealed conflicting systemic needs for a stable growth direction and an ability to change course in response to extracellular cues. Thus, the use of selective inhibition of microtubule growth at antiparallel overlaps constitutes a new organizing principle within a unipolar microtubule array.


Subject(s)
Bryophyta , Kinesins , Microtubules , Cytokinesis , Cytoskeleton , Kinesins/genetics
4.
J Exp Bot ; 74(6): 1821-1835, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36639877

ABSTRACT

Plasmodesmata are cytosolic bridges, lined by the plasma membrane and traversed by endoplasmic reticulum; plasmodesmata connect cells and tissues, and are critical for many aspects of plant biology. While plasmodesmata are notoriously difficult to extract, tissue fractionation and proteomic analyses can yield valuable knowledge of their composition. Here we have generated two novel proteomes to expand tissue and taxonomic representation of plasmodesmata: one from mature Arabidopsis leaves and one from the moss Physcomitrium patens, and leveraged these and existing data to perform a comparative analysis to identify evolutionarily conserved protein families that are associated with plasmodesmata. Thus, we identified ß-1,3-glucanases, C2 lipid-binding proteins, and tetraspanins as core plasmodesmal components that probably serve as essential structural or functional components. Our approach has not only identified elements of a conserved plasmodesmal proteome, but also demonstrated the added power offered by comparative analysis for recalcitrant samples. Conserved plasmodesmal proteins establish a basis upon which ancient plasmodesmal function can be further investigated to determine the essential roles these structures play in multicellular organism physiology in the green lineages.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Plasmodesmata/metabolism , Proteomics , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Cell Membrane/metabolism , Proteome/metabolism
5.
Sci Adv ; 8(42): eabo6693, 2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36269836

ABSTRACT

In plants, a variety of stimuli trigger long-range calcium signals that travel rapidly along the vasculature to distal tissues via poorly understood mechanisms. Here, we use quantitative imaging and analysis to demonstrate that traveling calcium waves are mediated by diffusion and bulk flow of amino acid chemical messengers. We propose that wounding triggers release of amino acids that diffuse locally through the apoplast, activating the calcium-permeable channel GLUTAMATE RECEPTOR-LIKE 3.3 as they pass. Over long distances through the vasculature, the wound-triggered dynamics of a fluorescent tracer show that calcium waves are likely driven by bulk flow of a channel-activating chemical. We observed that multiple stimuli trigger calcium waves with similar dynamics, but calcium waves alone cannot initiate all systemic defense responses, suggesting that mobile chemical messengers are a core component of complex systemic signaling in plants.

6.
Int J Mol Sci ; 22(5)2021 Mar 05.
Article in English | MEDLINE | ID: mdl-33807788

ABSTRACT

Development in multicellular organisms relies on cell proliferation and specialization. In plants, both these processes critically depend on the spatial organization of cells within a tissue. Owing to an absence of significant cellular migration, the relative position of plant cells is virtually made permanent at the moment of division. Therefore, in numerous plant developmental contexts, the (divergent) developmental trajectories of daughter cells are dependent on division plane positioning in the parental cell. Prior to and throughout division, specific cellular processes inform, establish and execute division plane control. For studying these facets of division plane control, the moss Physcomitrium (Physcomitrella) patens has emerged as a suitable model system. Developmental progression in this organism starts out simple and transitions towards a body plan with a three-dimensional structure. The transition is accompanied by a series of divisions where cell fate transitions and division plane positioning go hand in hand. These divisions are experimentally highly tractable and accessible. In this review, we will highlight recently uncovered mechanisms, including polarity protein complexes and cytoskeletal structures, and transcriptional regulators, that are required for 1D to 3D body plan formation.


Subject(s)
Bryopsida , Cell Division/physiology , Plant Cells/metabolism , Plant Development/physiology , Bryopsida/cytology , Bryopsida/growth & development
7.
Proc Natl Acad Sci U S A ; 117(17): 9621-9629, 2020 04 28.
Article in English | MEDLINE | ID: mdl-32284410

ABSTRACT

The plasma membrane (PM) is composed of heterogeneous subdomains, characterized by differences in protein and lipid composition. PM receptors can be dynamically sorted into membrane domains to underpin signaling in response to extracellular stimuli. In plants, the plasmodesmal PM is a discrete microdomain that hosts specific receptors and responses. We exploited the independence of this PM domain to investigate how membrane domains can independently integrate a signal that triggers responses across the cell. Focusing on chitin signaling, we found that responses in the plasmodesmal PM require the LysM receptor kinases LYK4 and LYK5 in addition to LYM2. Chitin induces dynamic changes in the localization, association, or mobility of these receptors, but only LYM2 and LYK4 are detected in the plasmodesmal PM. We further uncovered that chitin-induced production of reactive oxygen species and callose depends on specific signaling events that lead to plasmodesmata closure. Our results demonstrate that distinct membrane domains can integrate a common signal with specific machinery that initiates discrete signaling cascades to produce a localized response.


Subject(s)
Arabidopsis/physiology , Chitin/metabolism , Nicotiana/physiology , Plasmodesmata/physiology , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Biomechanical Phenomena , Cell Membrane/physiology , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Plant , Mechanotransduction, Cellular/physiology , Plant Leaves/physiology , Protein Kinases/genetics , Protein Kinases/metabolism , Reactive Oxygen Species
8.
Cell ; 180(3): 427-439.e12, 2020 02 06.
Article in English | MEDLINE | ID: mdl-32004461

ABSTRACT

Cell polarity is fundamental for tissue morphogenesis in multicellular organisms. Plants and animals evolved multicellularity independently, and it is unknown whether their polarity systems are derived from a single-celled ancestor. Planar polarity in animals is conferred by Wnt signaling, an ancient signaling pathway transduced by Dishevelled, which assembles signalosomes by dynamic head-to-tail DIX domain polymerization. In contrast, polarity-determining pathways in plants are elusive. We recently discovered Arabidopsis SOSEKI proteins, which exhibit polar localization throughout development. Here, we identify SOSEKI as ancient polar proteins across land plants. Concentration-dependent polymerization via a bona fide DIX domain allows these to recruit ANGUSTIFOLIA to polar sites, similar to the polymerization-dependent recruitment of signaling effectors by Dishevelled. Cross-kingdom domain swaps reveal functional equivalence of animal and plant DIX domains. We trace DIX domains to unicellular eukaryotes and thus show that DIX-dependent polymerization is an ancient mechanism conserved between kingdoms and central to polarity proteins.


Subject(s)
Arabidopsis/chemistry , Arabidopsis/cytology , Cell Polarity/physiology , Plant Cells/physiology , Polymerization , Protein Domains , Animals , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/metabolism , Axin Protein/chemistry , Axin Protein/metabolism , Bryopsida/chemistry , Bryopsida/cytology , Bryopsida/genetics , Bryopsida/growth & development , COS Cells , Chlorocebus aethiops , Dishevelled Proteins/metabolism , HEK293 Cells , Humans , Marchantia/chemistry , Marchantia/cytology , Marchantia/genetics , Marchantia/growth & development , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Plants, Genetically Modified , Repressor Proteins/metabolism , Wnt Signaling Pathway
9.
J Cell Sci ; 132(3)2019 02 11.
Article in English | MEDLINE | ID: mdl-30635445

ABSTRACT

During plant cytokinesis a radially expanding membrane-enclosed cell plate is formed from fusing vesicles that compartmentalizes the cell in two. How fusion is spatially restricted to the site of cell plate formation is unknown. Aggregation of cell-plate membrane starts near regions of microtubule overlap within the bipolar phragmoplast apparatus of the moss Physcomitrella patens Since vesicle fusion generally requires coordination of vesicle tethering and subsequent fusion activity, we analyzed the subcellular localization of several subunits of the exocyst, a tethering complex active during plant cytokinesis. We found that the exocyst complex subunit Sec6 but not the Sec3 or Sec5 subunits localized to microtubule overlap regions in advance of cell plate construction in moss. Moreover, Sec6 exhibited a conserved physical interaction with an ortholog of the Sec1/Munc18 protein KEULE, an important regulator for cell-plate membrane vesicle fusion in Arabidopsis Recruitment of the P. patens protein KEULE and vesicles to the early cell plate was delayed upon Sec6 gene silencing. Our findings, thus, suggest that vesicle-vesicle fusion is, in part, enabled by a pool of exocyst subunits at microtubule overlaps, which is recruited independently of vesicle delivery.


Subject(s)
Bryopsida/genetics , Cytokinesis/genetics , Gene Expression Regulation, Plant , Microtubules/metabolism , Plant Proteins/genetics , Vesicular Transport Proteins/genetics , Actin Cytoskeleton/metabolism , Actin Cytoskeleton/ultrastructure , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/ultrastructure , Arabidopsis Proteins/antagonists & inhibitors , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Bryopsida/metabolism , Bryopsida/ultrastructure , Carrier Proteins/antagonists & inhibitors , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Cycle Proteins , Cell Membrane/metabolism , Cell Membrane/ultrastructure , Gene Silencing , Genes, Reporter , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Microtubules/ultrastructure , Plant Cells/metabolism , Plant Cells/ultrastructure , Plant Proteins/metabolism , Protein Subunits/genetics , Protein Subunits/metabolism , Vesicular Transport Proteins/metabolism , Red Fluorescent Protein
10.
Curr Biol ; 27(4): 514-520, 2017 Feb 20.
Article in English | MEDLINE | ID: mdl-28132815

ABSTRACT

Different from animal cells that divide by constriction of the cortex inward, cells of land plants divide by initiating a new cell-wall segment from their center. For this, a disk-shaped, membrane-enclosed precursor termed the cell plate is formed that radially expands toward the parental cell wall [1-3]. The synthesis of the plate starts with the fusion of vesicles into a tubulo-vesicular network [4-6]. Vesicles are putatively delivered to the division plane by transport along microtubules of the bipolar phragmoplast network that guides plate assembly [7-9]. How vesicle immobilization and fusion are then locally triggered is unclear. In general, a framework for how the cytoskeleton spatially defines cell-plate formation is lacking. Here we show that membranous material for cell-plate formation initially accumulates along regions of microtubule overlap in the phragmoplast of the moss Physcomitrella patens. Kinesin-4-mediated shortening of these overlaps at the onset of cytokinesis proved to be required to spatially confine membrane accumulation. Without shortening, the wider cell-plate membrane depositions evolved into cell walls that were thick and irregularly shaped. Phragmoplast assembly thus provides a regular lattice of short overlaps on which a new cell-wall segment can be scaffolded. Since similar patterns of overlaps form in central spindles of animal cells, involving the activity of orthologous proteins [10, 11], we anticipate that our results will help uncover universal features underlying membrane-cytoskeleton coordination during cytokinesis.


Subject(s)
Bryopsida/physiology , Cytokinesis , Cytoskeleton/physiology , Kinesins/metabolism , Microtubules/metabolism , Plant Proteins/metabolism , Cell Wall/physiology
11.
J Proteomics ; 150: 9-17, 2017 01 06.
Article in English | MEDLINE | ID: mdl-27576137

ABSTRACT

The spread of multidrug resistant Mycobacterium tuberculosis is one of the major challenges in tuberculosis control. In Eurasia, the spread of multidrug resistant tuberculosis is driven by the M. tuberculosis Beijing genotype. In this study, we examined whether selective advantages are present in the proteome of Beijing isolates that contribute to the emergence of this genotype. To this end, we compared the proteome of M. tuberculosis Beijing to that of M. tuberculosis H37Rv, both in the presence and absence of the first-line antibiotic rifampicin. During rifampicin exposure, both M. tuberculosis genotypes express proteins belonging to the DosR dormancy regulon, which induces a metabolically hypoactive-, drug tolerant phenotype. However, these markers of rifampicin tolerance were already more abundant in the M. tuberculosis Beijing isolate prior to drug exposure. To determine whether the a priori high abundance of specific proteins contribute to the formation of antibiotic resistance in M. tuberculosis Beijing, we quantified the abundance of 33 selected proteins in 27 clinical isolates from the five most common M. tuberculosis lineages using parallel reaction monitoring. The observed pre-existing high abundance of dormancy proteins in Beijing strains provides an evolutionary advantage that allows these strains to persist for prolonged periods during rifampicin treatment. SIGNIFICANCE: M. tuberculosis is the leading cause of death by a bacterial infection worldwide. Treatment-regimen to eradicate this pathogen make use of the first-line antibiotic rifampicin, which is considered to be the cornerstone of modern day anti-tuberculosis treatment. Despite the potency of rifampicin, there is an increasing occurrence of rifampicin resistant mutants in a specific cluster of M. tuberculosis, the Beijing genotype. Using both a data dependent acquisition and a targeted proteomic approach we identified markers of rifampicin tolerance to be high abundant in members of the M. tuberculosis Beijing genotype, already prior drug exposure. The identification of this M. tuberculosis Beijing specific trait will contribute to improved diagnostics and treatment of M. tuberculosis.


Subject(s)
Biomarkers, Pharmacological/analysis , Communicable Diseases, Emerging/microbiology , Drug Resistance, Multiple, Bacterial , Mycobacterium tuberculosis/isolation & purification , Proteomics/methods , Rifampin/therapeutic use , Tuberculosis, Multidrug-Resistant/microbiology , Bacterial Typing Techniques/methods , Biomarkers, Pharmacological/metabolism , China , Communicable Diseases, Emerging/diagnosis , Communicable Diseases, Emerging/metabolism , Drug Resistance, Multiple, Bacterial/genetics , Epidemiological Monitoring , Humans , Molecular Diagnostic Techniques , Mycobacterium tuberculosis/genetics , Tuberculosis, Multidrug-Resistant/diagnosis , Tuberculosis, Multidrug-Resistant/metabolism
12.
J Proteome Res ; 15(6): 1776-86, 2016 06 03.
Article in English | MEDLINE | ID: mdl-27068340

ABSTRACT

The increasing occurrence of multidrug resistant tuberculosis exerts a major burden on treatment of this infectious disease. Thioridazine, previously used as a neuroleptic, is active against extensively drug resistant tuberculosis when added to other second- and third-line antibiotics. By quantitatively studying the proteome of thioridazine-treated Mycobacterium tuberculosis, we discovered the differential abundance of several proteins that are involved in the maintenance of the cell-envelope permeability barrier. By assessing the accumulation of fluorescent dyes in mycobacterial cells over time, we demonstrate that long-term drug exposure of M. tuberculosis indeed increased the cell-envelope permeability. The results of the current study demonstrate that thioridazine induced an increase in cell-envelope permeability and thereby the enhanced uptake of compounds. These results serve as a novel explanation to the previously reported synergistic effects between thioridazine and other antituberculosis drugs. This new insight in the working mechanism of this antituberculosis compound could open novel perspectives of future drug-administration regimens in combinational therapy.


Subject(s)
Cell Membrane Permeability/drug effects , Mycobacterium tuberculosis/drug effects , Proteome/drug effects , Thioridazine/pharmacology , Gene Expression Regulation, Bacterial/drug effects , Mycobacterium tuberculosis/ultrastructure
13.
J Microsc ; 263(2): 171-80, 2016 08.
Article in English | MEDLINE | ID: mdl-27027911

ABSTRACT

Live-cell imaging of plant-pathogen interactions is often hampered by the tissue complexity and multicell layered nature of the host. Here, we established a novel pathosystem with the moss Physcomitrella patens as host for Phytophthora. The tip-growing protonema cells of this moss are ideal for visualizing interactions with the pathogen over time using high-resolution microscopy. We tested four Phytophthora species for their ability to infect P. patens and showed that P. sojae and P. palmivora were only rarely capable to infect P. patens. In contrast, P. infestans and P. capsici frequently and successfully penetrated moss protonemal cells, showed intracellular hyphal growth and formed sporangia. Next to these successful invasions, many penetration attempts failed. Here the pathogen was blocked by a barrier of cell wall material deposited in papilla-like structures, a defence response that is common in higher plants. Another common response is the upregulation of defence-related genes upon infection and also in moss we observed this upregulation in tissues infected with Phytophthora. For more advanced analyses of the novel pathosystem we developed a special set-up that allowed live-cell imaging of subcellular defence processes by high-resolution microscopy. With this set-up, we revealed that Phytophthora infection of moss induces repositioning of the nucleus, accumulation of cytoplasm and rearrangement of the actin cytoskeleton, but not of microtubules.


Subject(s)
Bryopsida/cytology , Bryopsida/parasitology , Intracellular Space , Microscopy/methods , Phytophthora/pathogenicity , Plant Diseases/parasitology , Actins/metabolism , Cell Nucleus/metabolism , Cell Survival , Cell Wall/metabolism , Cytoplasm/metabolism , Phytophthora/physiology
14.
J Proteome Res ; 15(4): 1194-204, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-26930559

ABSTRACT

The "successful" Russian clone B0/W148 of Mycobacterium tuberculosis Beijing is well-known for its capacity to develop antibiotic resistance. During treatment, resistant mutants can occur that have inheritable resistance to specific antibiotics. Next to mutations, M. tuberculosis has several mechanisms that increase their tolerance to a variety of antibiotics. Insights in the phenotypic mechanisms that contribute to drug tolerance will increase our understanding of how antibiotic resistance develops in M. tuberculosis. In this study, we examined the (phospho)proteome dynamics in M. tuberculosis Beijing strain B0/W148 when exposed to a high dose of rifampicin; one of the most potent first-line antibiotics. A total of 2,534 proteins and 191 phosphorylation sites were identified, and revealed the differential regulation of DosR regulon proteins, which are necessary for the development of a dormant phenotype that is less susceptible to antibiotics. By examining independent phenotypic markers of dormancy, we show that persisters of in vitro rifampicin exposure entered a metabolically hypoactive state, which yields rifampicin and other antibiotics largely ineffective. These new insights in the role of protein regulation and post-translational modifications during the initial phase of rifampicin treatment reveal a shortcoming in the antituberculosis regimen that is administered to 8-9 million individuals annually.


Subject(s)
Antitubercular Agents/pharmacology , Bacterial Proteins/metabolism , Mycobacterium tuberculosis/drug effects , Phosphoproteins/metabolism , Protein Kinases/metabolism , Protein Processing, Post-Translational , Rifampin/pharmacology , Bacterial Proteins/genetics , DNA-Binding Proteins , Drug Resistance, Bacterial/genetics , Genotype , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , Phenotype , Phosphoproteins/genetics , Phosphorylation , Protein Kinases/genetics , Proteomics/methods , Regulon
15.
Rapid Commun Mass Spectrom ; 30(6): 731-8, 2016 Mar 30.
Article in English | MEDLINE | ID: mdl-26864526

ABSTRACT

RATIONALE: Peptide tandem mass spectra can be analyzed by a number of means. They can be compared against predicted spectra of peptides derived from genome sequences, compared against previously acquired and identified spectra, or - sometimes - sequenced de novo. We recently introduced another method which compares spectra between liquid chromatography/tandem mass spectrometry (LC/MS/MS) datasets to determine the shared spectral content, and demonstrated how this can be applied in a molecular phylogenetic study using sera from human and non-human primates. We will here explore if such a method have other, serendipitous uses. METHODS: We used the existing compareMS2 algorithm without modification on a diverse set of experiments. RESULTS: First we conducted a small phylogenetic study, using (mammalian) bone samples to study old material, and human pathogens aiming to distinguish clinically important strains. Although not as straightforward as primate sera analysis, the method shows significant promise for all these applications. We also used the algorithm to compare 24 different protocols for extraction of proteins from muscle tissue. The results provided useful information in comparing protocols. Finally, we applied compareMS2 aiming for quality control of two traceable protein reference standards (troponin) used in clinical chemistry assays, by analysing the effect of storage conditions. CONCLUSIONS: The results illustrate a broad applicability of the metric based on shared tandem mass spectra between LC/MS/MS datasets for analysing protein digests in different types of experiments. There is no reason to assume that our instance of this method is optimal in any of these situations, as it makes limited or no use of accurate mass and chromatographic retention time. We propose that with further improvement and refinement, this type of analysis can be applied as a simple but informative first step in many pipelines for bottom-up tandem mass spectrometry data analysis in proteomics and other fields, comparing or analysing large numbers of samples or datasets.


Subject(s)
Chromatography, Liquid/methods , Molecular Biology/methods , Phylogeny , Tandem Mass Spectrometry/methods , Animals , Biomarkers/analysis , Humans
16.
Syst Synth Biol ; 8(3): 187-94, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25136380

ABSTRACT

During cytokinesis the cytoplasm of a cell is divided to form two daughter cells. In animal cells, the existing plasma membrane is first constricted and then abscised to generate two individual plasma membranes. Plant cells on the other hand divide by forming an interior dividing wall, the so-called cell plate, which is constructed by localized deposition of membrane and cell wall material. Construction starts in the centre of the cell at the locus of the mitotic spindle and continues radially towards the existing plasma membrane. Finally the membrane of the cell plate and plasma membrane fuse to form two individual plasma membranes. Two microtubule-based cytoskeletal networks, the phragmoplast and the pre-prophase band (PPB), jointly control cytokinesis in plants. The bipolar microtubule array of the phragmoplast regulates cell plate deposition towards a cortical position that is templated by the ring-shaped microtubule array of the PPB. In contrast to most animal cells, plants do not use centrosomes as foci of microtubule growth initiation. Instead, plant microtubule networks are striking examples of self-organizing systems that emerge from physically constrained interactions of dispersed microtubules. Here we will discuss how microtubule-based activities including growth, shrinkage, severing, sliding, nucleation and bundling interrelate to jointly generate the required ordered structures. Evidence mounts that adapter proteins sense the local geometry of microtubules to locally modulate the activity of proteins involved in microtubule growth regulation and severing. Many of the proteins and mechanisms involved have roles in other microtubule assemblies as well, bestowing broader relevance to insights gained from plants.

17.
Mol Cell Proteomics ; 13(10): 2632-45, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25022876

ABSTRACT

The Mycobacterium tuberculosis Beijing genotype, consisting of the more ancient (atypical) and modern (typical) emerging sublineage, is one of the most prevalent and genetically conserved genotype families and has often been associated with multidrug resistance. In this study, we employed a 2D-LC-FTICR MS approach, combined with dimethylation of tryptic peptides, to systematically compare protein abundance levels of ancient and modern Beijing strains and identify differences that could be associated with successful spread of the modern sublineage. The data is available via ProteomeXchange using the identifier PXD000931. Despite the highly uniform protein abundance ratios in both sublineages, we identified four proteins as differentially regulated between both sublineages, which could explain the apparent increased adaptation of the modern Beijing strains. These proteins are; Rv0450c/MmpL4, Rv1269c, Rv3137, and Rv3283/sseA. Transcriptional and functional analysis of these proteins in a large cohort of 29 Beijing strains showed that the mRNA levels of Rv0450c/MmpL4 are significantly higher in modern Beijing strains, whereas we also provide evidence that Rv3283/sseA is less abundant in the modern Beijing sublineage. Our findings provide a possible explanation for the increased virulence and success of the modern Beijing sublineage. In addition, in the established dataset of 1817 proteins, we demonstrate the pre-existence of several, possibly unique, antibiotic efflux pumps in the proteome of the Beijing strains. This may reflect an increased ability of Beijing strains to escape exposure to antituberculosis drugs.


Subject(s)
Bacterial Proteins/classification , Bacterial Proteins/physiology , Mycobacterium tuberculosis/metabolism , Proteomics/methods , Adaptation, Physiological , Antitubercular Agents/pharmacology , Bacterial Proteins/genetics , Drug Resistance, Bacterial/drug effects , Evolution, Molecular , Gene Expression Regulation, Bacterial/drug effects , Genotype , Mycobacterium tuberculosis/classification , Mycobacterium tuberculosis/pathogenicity , Virulence Factors/genetics , Virulence Factors/metabolism
18.
Plant Cell ; 25(11): 4479-92, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24272487

ABSTRACT

The phragmoplast, a plant-specific apparatus that mediates cytokinesis, mainly consists of microtubules (MTs) arranged in a bipolar fashion, such that their plus ends interdigitate at the equator. Membrane vesicles are thought to move along the MTs toward the equator and fuse to form the cell plate. Although several genes required for phragmoplast MT organization have been identified, the mechanisms that maintain the bipolarity of phragmoplasts remain poorly understood. Here, we show that engaging phragmoplast MTs in a bipolar fashion in protonemal cells of the moss Physcomitrella patens requires the conserved MT cross-linking protein MICROTUBULE-ASSOCIATED PROTEIN65 (MAP65). Simultaneous knockdown of the three MAP65s expressed in those cells severely compromised MT interdigitation at the phragmoplast equator after anaphase onset, resulting in the collapse of the phragmoplast in telophase. Cytokinetic vesicles initially localized to the anaphase midzone as normal but failed to further accumulate in the next several minutes, although the bipolarity of the MT array was preserved. Our data indicate that the presence of bipolar MT arrays is insufficient for vesicle accumulation at the equator and further suggest that MAP65-mediated MT interdigitation is a prerequisite for maintenance of bipolarity of the phragmoplast and accumulation and/or fusion of cell plate-destined vesicles at the equatorial plane.


Subject(s)
Bryopsida/cytology , Microtubule-Associated Proteins/metabolism , Plant Proteins/metabolism , Bryopsida/genetics , Bryopsida/metabolism , Gene Knockdown Techniques , Microtubule-Associated Proteins/genetics , Microtubules/metabolism , Multigene Family , Phylogeny , Plant Proteins/genetics , Plants, Genetically Modified
19.
Mol Microbiol ; 88(2): 352-70, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23448716

ABSTRACT

For dispersal and host infection plant pathogens largely depend on asexual spores. Pathogenesis and sporulation are complex processes that are governed by cellular signalling networks including G-protein and phospholipid signalling. Oomycetes possess a family of novel proteins called GPCR-PIPKs (GKs) that are composed of a seven-transmembrane spanning (7-TM) domain fused to a phosphatidylinositol phosphate kinase (PIPK) domain. Based on this domain structure GKs are anticipated to link G-protein and phospholipid signal pathways; however, their functions are currently unknown. Expression analyses of the 12 GK genes in Phytophthora infestans and their orthologues in Phytophthora sojae, revealed differential expression during asexual development. PiGK1 and PiGK4 were fused to monomeric red fluorescent protein (mRFP) and ectopically expressed in P. infestans. In growing hyphae different subcellular distribution patterns were observed indicating that these two GKs act independently during development. We focused on the functional analyses of PiGK4. Its localization suggested involvement in cell differentiation and elongation and its 7-TM domain showed a canonical GPCR membrane topology. Silencing of GK4 and overexpression of full-length and truncated constructs in P. infestans revealed that PiGK4 is not only involved in spore germination and hyphal elongation but also in sporangia cleavage and infection.


Subject(s)
Phosphatidylinositol Phosphates/metabolism , Phosphotransferases/metabolism , Phytophthora infestans/enzymology , Phytophthora infestans/pathogenicity , Plant Diseases/microbiology , Receptors, G-Protein-Coupled/chemistry , Sporangia/growth & development , Gene Expression Regulation, Developmental , Hyphae/growth & development , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Phosphotransferases/genetics , Phytophthora infestans/growth & development , Phytophthora infestans/metabolism , Plant Leaves/microbiology , Receptors, G-Protein-Coupled/metabolism , Solanum tuberosum/microbiology , Spores/growth & development , Nicotiana/microbiology , Red Fluorescent Protein
20.
PLoS One ; 7(7): e39604, 2012.
Article in English | MEDLINE | ID: mdl-22808044

ABSTRACT

Since its emergence in Northwest Europe as a pathogen that infects trunks and branches of Aesculus spp. (the horse chestnuts) approximately one decade ago, Pseudomonas syringae pv. aesculi has rapidly established itself as major threat to these trees. Infected trees exhibit extensive necrosis of phloem and cambium, which can ultimately lead to dieback. The events after host entry leading to extensive necrosis are not well documented. In this work, the histopathology of this interaction is investigated and heat-treatment is explored as method to eradicate bacteria associated with established infections. The early wound-repair responses of A. hippocastanum, both in absence and presence of P. s. pv. aesculi, included cell wall lignification by a distinct layer of phloem and cortex parenchyma cells. The same cells also deposited suberin lamellae later on, suggesting this layer functions in compartmentalizing healthy from disrupted tissues. However, monitoring bacterial ingress, its construction appeared inadequate to constrain pathogen spread. Microscopic evaluation of bacterial dispersal in situ using immunolabelling and GFP-tagging of P. s. pv. aesculi, revealed two discriminative types of bacterial colonization. The forefront of lesions was found to contain densely packed bacteria, while necrotic areas housed bacterial aggregates with scattered individuals embedded in an extracellular matrix of bacterial origin containing alginate. The endophytic localization and ability of P. s. pv aesculi to create a protective matrix render it poorly accessible for control agents. To circumvent this, a method based on selective bacterial lethality at 39 °C was conceived and successfully tested on A. hippocastanum saplings, providing proof of concept for controlling this disease by heat-treatment. This may be applicable for curing other tree cankers, caused by related phytopathogens.


Subject(s)
Aesculus/microbiology , Aesculus/ultrastructure , Phloem/microbiology , Phloem/ultrastructure , Plant Diseases/microbiology , Pseudomonas syringae/physiology , Aesculus/immunology , Gene Expression , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Hot Temperature , Microscopy, Fluorescence , Phloem/immunology , Plant Diseases/immunology , Plasmids/genetics , Pseudomonas syringae/pathogenicity , Transformation, Bacterial
SELECTION OF CITATIONS
SEARCH DETAIL
...