Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PeerJ ; 10: e14216, 2022.
Article in English | MEDLINE | ID: mdl-36518272

ABSTRACT

Established populations of the non-native horned-face bee, Osmia cornifrons (Radoszkowski, 1887), and the taurus mason bee, Osmia taurus Smith, 1873 (Hymenoptera: Megachilidae), have been identified from Canada for the first time. In the US, the importation of O. cornifrons, beginning in the 1970s, led to its release for agricultural crop pollination and spread across the country. In this article, we report on O. cornifrons captured while sampling wild bees in Toronto, Ontario using hand nets, bug vacuums, and vane traps, as well as established populations in trap nests, from 2017-2020. The morphologically similar O. taurus, which was accidentally introduced to the US with shipments of imported O. cornifrons, was also recorded in our samples. Recently, a few individual O. taurus specimens have been identified from Ontario and Quebec; however, the extent of our sampling included nests, indicating it is also established in Canada. Others have shown its population growth to have been associated with concordant declines in abundances of native mason bee species in the US, and similar impacts are possible in Canada if action is not taken. We propose three non-mutually exclusive possible pathways for the arrival of O. cornifrons, as well as O. taurus, in Canada: (1) natural migration northward from non-native populations in the US, (2) international importation in the 1980s-2000s to support agricultural research programs, and (3) unintentional release of mason bee cocoons purchased from non-local vendors. We argue that a focus on enhancing populations of locally occurring native bees and stronger policy on the importation and sale of non-native bees are needed.


Subject(s)
Hymenoptera , Bees , Animals , Pollination , Ontario , Quebec , Agriculture
2.
Curr Opin Insect Sci ; 46: 43-49, 2021 08.
Article in English | MEDLINE | ID: mdl-33540109

ABSTRACT

Invasive bee species have negative impacts on native bee species and are a source of conservation concern. The invasion of bee species is mediated by the abiotic environment, biotic communities, and propagule pressure of the invader. Each of these factors is further affected by management, which can amplify the magnitude of the impact on native bee species. The ecological traits and behavior of invasive bees also play a role in whether and to what degree they compete with or otherwise negatively affect native bee species. The magnitude of impact of an invasive bee species relates both to its population size in the introduced habitat and the degree of overlap between its resources and the resources native bees require.


Subject(s)
Flowers , Introduced Species , Animals , Bees , Ecosystem , Population Density
3.
Evol Appl ; 12(3): 384-398, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30828362

ABSTRACT

Urban ecosystems are rapidly expanding throughout the world, but how urban growth affects the evolutionary ecology of species living in urban areas remains largely unknown. Urban ecology has advanced our understanding of how the development of cities and towns change environmental conditions and alter ecological processes and patterns. However, despite decades of research in urban ecology, the extent to which urbanization influences evolutionary and eco-evolutionary change has received little attention. The nascent field of urban evolutionary ecology seeks to understand how urbanization affects the evolution of populations, and how those evolutionary changes in turn influence the ecological dynamics of populations, communities, and ecosystems. Following a brief history of this emerging field, this Perspective article provides a research agenda and roadmap for future research aimed at advancing our understanding of the interplay between ecology and evolution of urban-dwelling organisms. We identify six key questions that, if addressed, would significantly increase our understanding of how urbanization influences evolutionary processes. These questions consider how urbanization affects nonadaptive evolution, natural selection, and convergent evolution, in addition to the role of urban environmental heterogeneity on species evolution, and the roles of phenotypic plasticity versus adaptation on species' abundance in cities. Our final question examines the impact of urbanization on evolutionary diversification. For each of these six questions, we suggest avenues for future research that will help advance the field of urban evolutionary ecology. Lastly, we highlight the importance of integrating urban evolutionary ecology into urban planning, conservation practice, pest management, and public engagement.

4.
Glob Chang Biol ; 23(5): 1783-1791, 2017 05.
Article in English | MEDLINE | ID: mdl-27550575

ABSTRACT

Shifts in the timing of life history events have become an important source of information about how organisms are responding to climate change. Phenological data have generally been treated as purely temporal, with scant attention to the inherent spatial aspects of such data. However, phenological data are tied to a specific location, and considerations of sampling design, both over space and through time, can critically affect the patterns that emerge. Focusing on flowering phenology, we describe how purely spatial shifts, such as adding new study plots, or the colonization of a study plot by a new species, can masquerade as temporal shifts. Such shifts can look like responses to climate change but are not. Furthermore, the same aggregate phenological curves can be composed of individuals with either very different or very similar phenologies. We conclude with a set of recommendations to avoid ambiguities arising from the spatiotemporal duality of phenological data.


Subject(s)
Climate Change , Plants , Flowers , Reproduction , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...