Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Immunol ; 204(10): 2808-2817, 2020 05 15.
Article in English | MEDLINE | ID: mdl-32253244

ABSTRACT

Macrophages can either promote or resolve inflammatory responses, and their polarization state is modulated by peripheral serotonin (5-hydroxytryptamine [5-HT]). In fact, pro- and anti-inflammatory macrophages differ in the expression of serotonin receptors, with 5-HT2B and 5-HT7 expression restricted to M-CSF-primed monocyte-derived macrophages (M-MØ). 5-HT7 drives the acquisition of profibrotic and anti-inflammatory functions in M-MØ, whereas 5-HT2B prevents the degeneration of spinal cord mononuclear phagocytes and modulates motility of murine microglial processes. Because 5-HT2B mediates clinically relevant 5-HT-related pathologies (valvular heart disease, pulmonary arterial hypertension) and is an off target of anesthetics, antiparkinsonian drugs, and selective serotonin reuptake inhibitors, we sought to determine the transcriptional consequences of 5-HT2B engagement in human macrophages, for which 5-HT2B signaling remains unknown. Assessment of the effects of specific agonists and antagonist revealed that 5-HT2B engagement modifies the cytokine and gene signature of anti-inflammatory M-MØ, upregulates the expression of aryl hydrocarbon receptor (AhR) target genes, and stimulates the transcriptional activation of AhR. Moreover, we found that 5-HT dose dependently upregulates the expression of AhR target genes in M-MØ and that the 5-HT-mediated activation of AhR is 5-HT2B dependent because it is abrogated by the 5-HT2B-specific antagonist SB204741. Altogether, our results demonstrate the existence of a functional 5-HT/5-HT2B/AhR axis in human macrophages and indicate that 5-HT potentiates the activity of a transcription factor (AhR) that regulates immune responses and the biological responses to xenobiotics.


Subject(s)
Macrophages/physiology , Microglia/physiology , Receptor, Serotonin, 5-HT2B/metabolism , Receptors, Aryl Hydrocarbon/metabolism , Serotonin/metabolism , Cell Differentiation , Cells, Cultured , Humans , Indoles/pharmacology , Phagocytosis , RNA, Small Interfering/genetics , Receptors, Aryl Hydrocarbon/genetics , Receptors, Serotonin/metabolism , Serotonin 5-HT2 Receptor Agonists/pharmacology , Signal Transduction , Thiophenes/pharmacology , Transcriptional Activation , Transcriptome
2.
Int J Mol Sci ; 20(12)2019 Jun 25.
Article in English | MEDLINE | ID: mdl-31242676

ABSTRACT

Upon inflammation, monocyte-derived macrophages (MΦ) infiltrate blood vessels to regulate several processes involved in vascular pathophysiology. However, little is known about the mediators involved. Macrophage polarization is crucial for a fast and efficient initial response (GM-MΦ) and a good resolution (M-MΦ) of the inflammatory process. The functional activity of polarized MΦ is exerted mainly through their secretome, which can target other cell types, including endothelial cells. Endoglin (CD105) is a cell surface receptor expressed by endothelial cells and MΦ that is markedly upregulated in inflammation and critically involved in angiogenesis. In addition, a soluble form of endoglin with anti-angiogenic activity has been described in inflammation-associated pathologies. The aim of this work was to identify components of the MΦ secretome involved in the shedding of soluble endoglin. We find that the GM-MΦ secretome contains metalloprotease 12 (MMP-12), a GM-MΦ specific marker that may account for the anti-angiogenic activity of the GM-MΦ secretome. Cell surface endoglin is present in both GM-MΦ and M-MΦ, but soluble endoglin is only detected in GM-MΦ culture supernatants. Moreover, MMP-12 is responsible for the shedding of soluble endoglin in vitro and in vivo by targeting membrane-bound endoglin in both MΦ and endothelial cells. These data demonstrate a direct correlation between GM-MΦ polarization, MMP-12, and soluble endoglin expression and function. By targeting endothelial cells, MMP-12 may represent a novel mediator involved in vascular homeostasis.


Subject(s)
Endoglin/metabolism , Endothelial Cells/metabolism , Inflammation Mediators/metabolism , Macrophages/metabolism , Matrix Metalloproteinase 12/metabolism , Animals , Cells, Cultured , Disease Models, Animal , Disease Susceptibility , Endoglin/genetics , Gene Expression , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Humans , Inflammation/etiology , Inflammation/metabolism , Macrophage Colony-Stimulating Factor/metabolism , Macrophages/immunology , Mice , Models, Biological
3.
J Immunol ; 201(1): 41-52, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29743313

ABSTRACT

IVIg is an approved therapy for immunodeficiency and for several autoimmune and inflammatory diseases. However, the molecular basis for the IVIg anti-inflammatory activity remains to be fully explained and cannot be extrapolated from studies on animal models of disease. We now report that IVIg impairs the generation of human monocyte-derived anti-inflammatory macrophages by inducing JNK activation and activin A production and limits proinflammatory macrophage differentiation by inhibiting GM-CSF-driven STAT5 activation. In vivo, IVIg provokes a rapid increase in peripheral blood activin A, CCL2, and IL-6 levels, an effect that can be recapitulated in vitro on human monocytes. On differentiating monocytes, IVIg promotes the acquisition of altered transcriptional and cytokine profiles, reduces TLR expression and signaling, and upregulates negative regulators of TLR-initiated intracellular signaling. In line with these effects, in vivo IVIg infusion induces a state tolerant toward subsequent stimuli that results in reduced inflammatory cytokine production after LPS challenge in human peripheral blood and significant protection from LPS-induced death in mice. Therefore, IVIg conditions human macrophages toward the acquisition of a state of cross-tolerance against inflammatory stimuli, an effect that correlates with the net anti-inflammatory action of IVIg in vivo.


Subject(s)
Anti-Inflammatory Agents/immunology , Immune Tolerance/immunology , Immunoglobulins, Intravenous/immunology , Immunoglobulins, Intravenous/pharmacology , Macrophages/immunology , STAT5 Transcription Factor/metabolism , Activins/blood , Animals , Cells, Cultured , Chemokine CCL2/blood , Enzyme Activation , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Humans , Inflammation/immunology , Interleukin-6/blood , JNK Mitogen-Activated Protein Kinases/metabolism , Lipopolysaccharides/immunology , Mice , Monocytes/cytology , Monocytes/immunology
4.
J Immunol ; 197(2): 590-8, 2016 07 15.
Article in English | MEDLINE | ID: mdl-27271568

ABSTRACT

Lung surfactant protein A (SP-A) plays an important function in modulating inflammation in the lung. However, the exact role of SP-A and the mechanism by which SP-A affects IFN-γ-induced activation of alveolar macrophages (aMϕs) remains unknown. To address these questions, we studied the effect of human SP-A on rat and human aMϕs stimulated with IFN-γ, LPS, and combinations thereof and measured the induction of proinflammatory mediators as well as SP-A's ability to bind to IFN-γ or IFN-γR1. We found that SP-A inhibited (IFN-γ + LPS)-induced TNF-α, iNOS, and CXCL10 production by rat aMϕs. When rat macrophages were stimulated with LPS and IFN-γ separately, SP-A inhibited both LPS-induced signaling and IFN-γ-elicited STAT1 phosphorylation. SP-A also decreased TNF-α and CXCL10 secretion by ex vivo-cultured human aMϕs and M-CSF-derived macrophages stimulated by either LPS or IFN-γ or both. Hence, SP-A inhibited upregulation of IFN-γ-inducible genes (CXCL10, RARRES3, and ETV7) as well as STAT1 phosphorylation in human M-CSF-derived macrophages. In addition, we found that SP-A bound to human IFN-γ (KD = 11 ± 0.5 nM) in a Ca(2+)-dependent manner and prevented IFN-γ interaction with IFN-γR1 on human aMϕs. We conclude that SP-A inhibition of (IFN-γ + LPS) stimulation is due to SP-A attenuation of both inflammatory agents and that the binding of SP-A to IFN-γ abrogates IFN-γ effects on human macrophages, suppressing their classical activation and subsequent inflammatory response.


Subject(s)
Interferon-gamma/immunology , Macrophage Activation/immunology , Macrophages, Alveolar/immunology , Pulmonary Surfactant-Associated Protein A/immunology , Receptors, Interferon/immunology , Animals , Blotting, Western , Cytokines/biosynthesis , Humans , Interferon-gamma/metabolism , Male , Pulmonary Surfactant-Associated Protein A/metabolism , Rats , Rats, Sprague-Dawley , Real-Time Polymerase Chain Reaction , Receptors, Interferon/metabolism
5.
PLoS Genet ; 12(3): e1005935, 2016 Mar.
Article in English | MEDLINE | ID: mdl-27010826

ABSTRACT

Endoglin is an auxiliary receptor for members of the TGF-ß superfamily and plays an important role in the homeostasis of the vessel wall. Mutations in endoglin gene (ENG) or in the closely related TGF-ß receptor type I ACVRL1/ALK1 are responsible for a rare dominant vascular dysplasia, the Hereditary Hemorrhagic Telangiectasia (HHT), or Rendu-Osler-Weber syndrome. Endoglin is also expressed in human macrophages, but its role in macrophage function remains unknown. In this work, we show that endoglin expression is triggered during the monocyte-macrophage differentiation process, both in vitro and during the in vivo differentiation of blood monocytes recruited to foci of inflammation in wild-type C57BL/6 mice. To analyze the role of endoglin in macrophages in vivo, an endoglin myeloid lineage specific knock-out mouse line (Eng(fl/fl)LysMCre) was generated. These mice show a predisposition to develop spontaneous infections by opportunistic bacteria. Eng(fl/fl)LysMCre mice also display increased survival following LPS-induced peritonitis, suggesting a delayed immune response. Phagocytic activity is impaired in peritoneal macrophages, altering one of the main functions of macrophages which contributes to the initiation of the immune response. We also observed altered expression of TGF-ß1 target genes in endoglin deficient peritoneal macrophages. Overall, the altered immune activity of endoglin deficient macrophages could help to explain the higher rate of infectious diseases seen in HHT1 patients.


Subject(s)
Activin Receptors, Type I/genetics , Immunity, Innate/genetics , Inflammation/genetics , Intracellular Signaling Peptides and Proteins/genetics , Telangiectasia, Hereditary Hemorrhagic/genetics , Transforming Growth Factor beta/genetics , Activin Receptors, Type I/biosynthesis , Activin Receptors, Type II , Animals , Endoglin , Flow Cytometry , Gene Expression Regulation , Humans , Inflammation/pathology , Intracellular Signaling Peptides and Proteins/biosynthesis , Macrophages/immunology , Macrophages/metabolism , Mice , Mice, Knockout , Opportunistic Infections/genetics , Opportunistic Infections/pathology , Phagocytosis/genetics , Telangiectasia, Hereditary Hemorrhagic/pathology
6.
J Immunol ; 193(10): 5181-9, 2014 Nov 15.
Article in English | MEDLINE | ID: mdl-25326025

ABSTRACT

Intravenous Igs (IVIg) therapy is widely used as an immunomodulatory strategy in inflammatory pathologies and is suggested to promote cancer regression. Because progression of tumors depends on their ability to redirect the polarization state of tumor-associated macrophages (from M1/immunogenic/proinflammatory to M2/anti-inflammatory), we have evaluated whether IVIg limits tumor progression and dissemination through modulation of macrophage polarization. In vitro, IVIg inhibited proinflammatory cytokine production from M1 macrophages and induced a M2-to-M1 polarization switch on human and murine M2 macrophages. In vivo, IVIg modified the polarization of tumor-associated myeloid cells in a Fcεr1γ chain-dependent manner, modulated cytokine blood levels in tumor-bearing animals, and impaired tumor progression via FcγRIII (CD16), FcγRIV, and FcRγ engagement, the latter two effects being macrophage mediated. Therefore, IVIg immunomodulatory activity is dependent on the polarization state of the responding macrophages, and its ability to trigger a M2-to-M1 macrophage polarization switch might be therapeutically useful in cancer, in which proinflammatory or immunogenic functions should be promoted.


Subject(s)
Antineoplastic Agents/pharmacology , Gene Expression Regulation, Neoplastic , Immunoglobulins, Intravenous/pharmacology , Immunologic Factors/pharmacology , Lung Neoplasms/drug therapy , Macrophages/drug effects , Melanoma, Experimental/drug therapy , Animals , Cell Differentiation/drug effects , Cell Differentiation/immunology , Cells, Cultured , Cytokines/genetics , Cytokines/immunology , Humans , Lung/drug effects , Lung/immunology , Lung/pathology , Lung Neoplasms/genetics , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Macrophages/classification , Macrophages/immunology , Macrophages/pathology , Melanoma, Experimental/genetics , Melanoma, Experimental/immunology , Melanoma, Experimental/pathology , Mice , Neoplasm Transplantation , Receptors, IgE/genetics , Receptors, IgE/immunology , Receptors, IgG/genetics , Receptors, IgG/immunology , Signal Transduction , Tumor Burden/drug effects
7.
Carbohydr Polym ; 112: 109-13, 2014 Nov 04.
Article in English | MEDLINE | ID: mdl-25129723

ABSTRACT

ß-glucans produced by eukaryotic cells and by microorganisms are known to modulate immune responses by affecting macrophage activation. Here, we have investigated the effect of purified 2-substituted (1-3)-ß-D-glucan, produced by either Pediococcus parvulus 2.6 or Lactococcus lactis NZ9000[pNGTF], on the effector functions of human PMA-differentiated THP-1 cells and M1 pro-inflammatory monocyte-derived macrophages. The results reveal that this kind of ß-D-glucan activates macrophages and has an anti-inflammatory effect.


Subject(s)
Immunologic Factors/pharmacology , Macrophages/drug effects , Pediococcus/chemistry , beta-Glucans/chemistry , beta-Glucans/pharmacology , Cells, Cultured , Cytokines/metabolism , Humans , Immunologic Factors/chemistry , Lactococcus lactis/chemistry , Lactococcus lactis/genetics , Macrophage Activation/drug effects , Macrophages/immunology , Macrophages/metabolism , Myeloid Cells/drug effects , Polysaccharides, Bacterial/chemistry , Polysaccharides, Bacterial/genetics , Polysaccharides, Bacterial/isolation & purification , Signal Transduction/drug effects
8.
Adv Exp Med Biol ; 824: 89-115, 2014.
Article in English | MEDLINE | ID: mdl-25038996

ABSTRACT

Macrophages display a ample plethora of effector functions whose acquisition is promoted by the surrounding cytokine and cellular environment. Depending on the stimulus, macrophages become specialized ("polarized") for either pathogen elimination, tissue repair and wound healing or immunosuppression. This "polarization" versatility allows macrophages to critically contribute to tissue homeostasis, as they promote initiation and resolution of inflammatory responses. As a consequence, deregulation of the tissue macrophage polarization balance is an etiological agent of chronic inflammation, autoimmune diseases, cancer and even obesity and insulin resistance. In the present review we describe current concepts on the molecular basis and the patho-physiological implications of macrophage polarization, and describe its modulation by serotonin (5-HT), a neurotransmitter that regulates inflammation and tissue repair via a large set of receptors (5-HTR1-7). 5-HT modulates the phenotypic and functional polarization of macrophages, and contributes to the maintenance of an anti-inflammatory state mainly via 5-HTR2B and 5-HTR7, whose activation has a great impact on macrophage gene expression profile. The identification of 5-HTR2B and 5-HTR7 as functionally-relevant polarization markers suggests their therapeutic value in inflammatory pathologies as well as their potential involvement in linking the immune and nervous systems.


Subject(s)
Gene Expression Regulation/immunology , Homeostasis/immunology , Macrophages/immunology , Receptors, Serotonin/immunology , Serotonin/immunology , Animals , Humans , Inflammation/immunology , Inflammation/metabolism , Inflammation/pathology , Macrophages/metabolism , Macrophages/pathology , Serotonin/metabolism
9.
J Cell Sci ; 127(Pt 12): 2723-35, 2014 Jun 15.
Article in English | MEDLINE | ID: mdl-24777481

ABSTRACT

Endoglin plays a crucial role in pathophysiological processes such as hereditary hemorrhagic telangiectasia (HHT), preeclampsia and cancer. Endoglin expression is upregulated during the monocyte-to-macrophage transition, but little is known about its regulation and function in these immune cells. Two different alternatively spliced isoforms of endoglin have been reported, L-endoglin and S-endoglin. Although L-endoglin is the predominant variant, here, we found that there was an increased expression of the S-endoglin isoform during senescence of the myeloid lineage in human and murine models. We performed a stable isotope labelling of amino acids in cell culture (SILAC) analysis of both L-endoglin and S-endoglin transfectants in the human promonocytic cell line U937. Analysis of differentially expressed protein clusters allowed the identification of cellular activities affected during aging. S-endoglin expression led to decreased cellular proliferation and a decreased survival response to granulocyte-macrophage colony-stimulating factor (GM-CSF)-induced apoptosis, as well as increased oxidative stress. Gene expression and functional studies suggested that there was a non-redundant role for each endoglin isoform in monocyte biology. In addition, we found that S-endoglin impairs the monocytic differentiation into the pro-inflammatory M1 phenotype and contributes to the compromised status of macrophage functions during aging.


Subject(s)
Antigens, CD/metabolism , Macrophages/physiology , Receptors, Cell Surface/metabolism , Alternative Splicing , Antigens, CD/genetics , Cell Differentiation , Cell Line , Cell Lineage , Cell Polarity , Cellular Senescence , Endoglin , Gene Expression , Humans , Monocytes/physiology , Oxidative Stress , Protein Isoforms/genetics , Protein Isoforms/metabolism , Receptors, Cell Surface/genetics
10.
J Immunol ; 190(5): 2301-10, 2013 Mar 01.
Article in English | MEDLINE | ID: mdl-23355731

ABSTRACT

Besides its role as a neurotransmitter, serotonin (5-hydroxytryptamine, 5HT) regulates inflammation and tissue repair via a set of receptors (5HT(1-7)) whose pattern of expression varies among cell lineages. Considering the importance of macrophage polarization plasticity for inflammatory responses and tissue repair, we evaluated whether 5HT modulates human macrophage polarization. 5HT inhibited the LPS-induced release of proinflammatory cytokines without affecting IL-10 production, upregulated the expression of M2 polarization-associated genes (SERPINB2, THBS1, STAB1, COL23A1), and reduced the expression of M1-associated genes (INHBA, CCR2, MMP12, SERPINE1, CD1B, ALDH1A2). Whereas only 5HT(7) mediated the inhibitory action of 5HT on the release of proinflammatory cytokines, both 5HT(2B) and 5HT(7) receptors mediated the pro-M2 skewing effect of 5HT. In fact, blockade of both receptors during in vitro monocyte-to-macrophage differentiation preferentially modulated the acquisition of M2 polarization markers. 5HT(2B) was found to be preferentially expressed by anti-inflammatory M2(M-CSF) macrophages and was detected in vivo in liver Kupffer cells and in tumor-associated macrophages. Therefore, 5HT modulates macrophage polarization and contributes to the maintenance of an anti-inflammatory state via 5HT(2B) and 5HT(7), whose identification as functionally relevant markers for anti-inflammatory/homeostatic human M2 macrophages suggests their potential therapeutic value in inflammatory pathologies.


Subject(s)
Biomarkers/metabolism , Cell Differentiation/drug effects , Macrophages/drug effects , Receptor, Serotonin, 5-HT2B/immunology , Receptors, Serotonin/immunology , Serotonin/pharmacology , Animals , Cell Lineage , Cells, Cultured , Gene Expression Regulation/drug effects , Gene Expression Regulation/immunology , Genes, Reporter , Humans , Inflammation/chemically induced , Inflammation/immunology , Inflammation/metabolism , Interleukin-10/biosynthesis , Interleukin-10/immunology , Kupffer Cells/cytology , Kupffer Cells/drug effects , Kupffer Cells/immunology , Lipopolysaccharides , Luciferases , Macrophages/cytology , Macrophages/immunology , Mice , Mice, Inbred C57BL , Receptor, Serotonin, 5-HT2B/genetics , Receptors, Serotonin/genetics , Serotonin/immunology , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...