Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Psychiatr Res ; 164: 296-303, 2023 08.
Article in English | MEDLINE | ID: mdl-37392719

ABSTRACT

Guanosine is a purinergic nucleoside that has been shown to have neuroprotective effects, mainly through its ability to modulate the glutamatergic system. An increase in pro-inflammatory cytokine levels triggers the activation of the enzyme indoleamine 2,3-dioxygenase 1 (IDO-1), leading to glutamatergic excitotoxicity, which has important roles in the pathophysiology of depression. The aim of this study was to investigate the possible antidepressant-like effects and underlying mechanisms of action of guanosine against lipopolysaccharide (LPS)-induced depression in a mouse model. Mice were orally pre-treated with saline (0.9% NaCl), guanosine (8 or 16 mg/kg), or fluoxetine (30 mg/kg) for 7 days before LPS (0.5 mg/kg, intraperitoneal) injection. One day after LPS injection, mice were subjected to the forced swim test (FST), tail suspension test (TST), and open field test (OFT). After the behavioral tests, mice were euthanized and the levels of tumor necrosis factor-α (TNF-α), IDO-1, glutathione, and malondialdehyde in the hippocampus were measured. Pretreatment with guanosine was able to prevent LPS- induced depressive-like behaviors in the TST and FST. In the OFT, no locomotor changes were observed with any treatment. Both guanosine (8 and 16 mg/kg/day) and fluoxetine treatment prevented the LPS-induced increase in TNF-α and IDO expression and lipid peroxidation as well as decrease of reduced glutathione levels in the hippocampus. Taken together, our findings suggest that guanosine may have neuroprotective effects against LPS-induced depressive-like behavior through preventing oxidative stress and the expression of IDO-1 and TNF-α in the hippocampus.


Subject(s)
Depression , Neuroprotective Agents , Mice , Animals , Depression/chemically induced , Depression/drug therapy , Depression/metabolism , Lipopolysaccharides/pharmacology , Fluoxetine/pharmacology , Tumor Necrosis Factor-alpha/metabolism , Guanosine/pharmacology , Neuroprotective Agents/pharmacology , Behavior, Animal , Hippocampus/metabolism
2.
J Nutr Biochem ; 107: 109070, 2022 09.
Article in English | MEDLINE | ID: mdl-35644409

ABSTRACT

The risk for cardiovascular diseases (CVR) has been associated with oxidative DNA damage, but the genetic and environmental factors involved in the antioxidant and DNA repair system contributing to this damage are unknown. The aim was to evaluate the levels of oxidative DNA damage in CVR subjects and how it is related with some genetic and nutritional factors. The cross-sectional study evaluated 136 individuals of both sexes, aged 20-59 years, with at least one cardiovascular risk factor. The global risk score was used to classify individuals at low, intermediate, and high cardiovascular risk. The dietary total antioxidant capacity (DTAC) was calculated using table with FRAP values. The oxidative DNA damage was verified by the comet assay. The variants null of Glutathione-S-transferases Mu1 and Theta 1(GSTM1 and GSTT1) and rs25487 of X-Ray Repair Cross Complementing Protein 1 (XRCC1) were analyzed by real-time PCR and PCR-RFLP, respectively. The oxidative DNA damage was higher in patients with intermediate/high CVR than in patients with low CVR (P=.01). Individuals with GSTT1/GSTM1 null genotypes or arg/gln+gln/gln genotypes of the XRCC1 (rs25487) gene showed similar levels of oxidative DNA damage compared wild genotype. Multivariate regression analysis demonstrated that oxidative DNA damage in individuals with CVR depends on serum levels of vitamin A, selenium, and DTAC independently of the other factors [F(6.110)=8.213; P<.001; R2=0.330]. These findings suggest that nutritional factors such as DTAC, vitamin A and selenium may have a protective effect against oxidative DNA damage in these individuals.


Subject(s)
Cardiovascular Diseases , Selenium , Antioxidants/analysis , Cardiovascular Diseases/genetics , Cross-Sectional Studies , DNA Damage , Female , Genetic Predisposition to Disease , Genotype , Glutathione Transferase/genetics , Heart Disease Risk Factors , Humans , Male , Oxidative Stress/genetics , Polymorphism, Genetic , Risk Factors , Vitamin A , X-ray Repair Cross Complementing Protein 1/genetics
3.
Exp Physiol ; 104(7): 1029-1037, 2019 07.
Article in English | MEDLINE | ID: mdl-31025768

ABSTRACT

NEW FINDINGS: What is the central question of this study? Does protein restriction in early life modify glucose-induced insulin secretion by altering [Ca2+ ]i and the expression of SNARE proteins in pancreatic islets from pregnant rats? What is the main finding and its importance? Protein restriction in early life increased the first phase of glucose-induced insulin secretion and [Ca2+ ]i without altering the expression of SNARE proteins during pregnancy. This finding contributes to our understanding of the mechanisms of altered insulin secretion and might provide new perspectives for the development of therapeutic tools for gestational diabetes. ABSTRACT: We investigated the kinetics of glucose-induced insulin secretion and their relationship with [Ca2+ ]i and the expression of protein from exocytotic machinery in islets from recovered pregnant and long-term protein-deficient pregnant rats. Isolated islets were evaluated from control-fed pregnant (CP), protein-deficient pregnant (DP), control-fed non-pregnant (CNP) and protein-deficient non-pregnant (DNP) female adult rats, and from protein-deficient pregnant (RP) and non-pregnant (RNP) rats that were recovered after weaning. The insulin responses to glucose during the first phase of secretion were higher in RP than in CP groups, and both were higher than in the DP group. Islets from RP rats displayed a rapid increase in insulin release (first phase), followed by a plateau that was maintained thereafter. The [Ca2+ ]i in islets from the protein-deficient groups was lower than in the control groups, and both were lower than in the RP and RNP groups. SNAP-25 was increased in islets from pregnant rats independently of their nutritional status, and the syntaxin-1A content was reduced in islets from the RP rats compared with the RNP rats. The VAMP2 content was similar among the groups. Thus, protein restriction during intrauterine life and lactation increased insulin secretion during pregnancy, attributable, in part, to increased [Ca2+ ]i , and independent of an alteration of expression of SNARE proteins.


Subject(s)
Calcium/metabolism , Diet, Protein-Restricted/trends , Gene Expression Regulation, Developmental , Insulin Secretion/physiology , Intracellular Fluid/metabolism , SNARE Proteins/biosynthesis , Animals , Blood Glucose/metabolism , Female , Islets of Langerhans/metabolism , Male , Pregnancy , Rats , Rats, Wistar , SNARE Proteins/genetics
4.
Eur J Nutr ; 57(4): 1471-1483, 2018 Jun.
Article in English | MEDLINE | ID: mdl-28314963

ABSTRACT

PURPOSE: To evaluate the role of miR-124a in the regulation of genes involved in insulin exocytosis and its effects on the kinetics of insulin secretion in pancreatic islets from pregnant rats submitted to a low-protein diet. METHODS: Adult control non-pregnant (CNP) and control pregnant (CP) rats were fed a normal protein diet (17%), whereas low-protein non-pregnant (LPNP) and low-protein pregnant (LPP) rats were fed a low-protein diet (6%) from days 1 to 15 of pregnancy. Kinetics of the glucose-induced insulin release and measurement of [Ca2+]i in pancreatic islets were assessed by standard protocols. The miR-124a expression and gene transcriptions from pancreatic islets were determined by real-time polymerase chain reaction. RESULTS: In islets from LPP rats, the first phase of insulin release was abrogated. The AUC [Ca2+]i from the LPP group was lower compared with the other groups. miR-124a expression was reduced by a low-protein diet. SNAP-25 mRNA, protein expression, and Rab3A protein content were lower in the LPP rats than in CP rats. Syntaxin 1A and Kir6.2 mRNA levels were decreased in islets from low-protein rats compared with control rats, whereas their protein content was reduced in islets from pregnant rats. CONCLUSIONS: Loss of biphasic insulin secretion in islets from LPP rats appears to have resulted from reduced [Ca2+]i due, at least in part, to Kir6.2 underexpression and from the changes in exocytotic elements that are influenced either directly or indirectly by miR-124a.


Subject(s)
Diet, Protein-Restricted , Insulin/metabolism , Islets of Langerhans/metabolism , MicroRNAs/metabolism , Animals , Female , Glucose , Male , Pregnancy , Rats , Rats, Wistar
5.
Biol Res ; 48: 3, 2015 Jan 16.
Article in English | MEDLINE | ID: mdl-25654754

ABSTRACT

BACKGROUND: Gap junctions between ß-cells participate in the precise regulation of insulin secretion. Adherens junctions and their associated proteins are required for the formation, function and structural maintenance of gap junctions. Increases in the number of the gap junctions between ß-cells and enhanced glucose-stimulated insulin secretion are observed during pregnancy. In contrast, protein restriction produces structural and functional alterations that result in poor insulin secretion in response to glucose. We investigated whether protein restriction during pregnancy affects the expression of mRNA and proteins involved in gap and adherens junctions in pancreatic islets. An isoenergetic low-protein diet (6% protein) was fed to non-pregnant or pregnant rats from day 1-15 of pregnancy, and rats fed an isocaloric normal-protein diet (17% protein) were used as controls. RESULTS: The low-protein diet reduced the levels of connexin 36 and ß-catenin protein in pancreatic islets. In rats fed the control diet, pregnancy increased the levels of phospho-[Ser(279/282)]-connexin 43, and it decreased the levels of connexin 36, ß-catenin and beta-actin mRNA as well as the levels of connexin 36 and ß-catenin protein in islets. The low-protein diet during pregnancy did not alter these mRNA and protein levels, but avoided the increase of levels of phospho-[Ser(279/282)]-connexin 43 in islets. Insulin secretion in response to 8.3 mmol/L glucose was higher in pregnant rats than in non-pregnant rats, independently of the nutritional status. CONCLUSION: Short-term protein restriction during pregnancy prevented the Cx43 phosphorylation, but this event did not interfer in the insulin secretion.


Subject(s)
Cell Communication/physiology , Diabetes, Gestational/diet therapy , Diet, Protein-Restricted , Intercellular Junctions/metabolism , Islets of Langerhans/metabolism , RNA, Messenger/metabolism , Actins/metabolism , Adherens Junctions/metabolism , Analysis of Variance , Animals , Blood Glucose/analysis , Connexin 43/metabolism , Connexins/metabolism , Diabetes, Gestational/prevention & control , Female , Gap Junctions/metabolism , Glucose/administration & dosage , Insulin/metabolism , Insulin Secretion , Pregnancy , Rats, Wistar , Real-Time Polymerase Chain Reaction , beta Catenin/metabolism , Gap Junction delta-2 Protein
6.
Nutr Metab (Lond) ; 10(1): 5, 2013 Jan 10.
Article in English | MEDLINE | ID: mdl-23305533

ABSTRACT

We investigated if whether intrauterine protein restriction in combination with overfeeding during lactation would cause adult-onset obesity and metabolic disorders. After birth, litters from dams fed with control (17% protein) and low protein (6% protein) diets were adjusted to a size of four (CO and LO groups, respectively) or eight (CC and LC groups, respectively) pups. All of the offspring were fed a diet containing 12% protein from the time of weaning until they were 90 d old. Compared to the CC and LC groups, the CO and LO groups had higher relative and absolute food intakes, oxygen consumption and carbon dioxide production; lower brown adipose tissue weight and lipid content and greater weight gain and absolute and relative white adipose tissue weight and absolute lipid content. Compared with the CO and CC rats, the LC and LO rats exhibited higher relative food intake, brown adipose tissue weight and lipid content, reduced oxygen consumption, carbon dioxide production and spontaneous activity, increased relative retroperitoneal adipose tissue weight and unaltered absolute white adipose tissue weight and lipid content. The fasting serum glucose was similar among the groups. The area under the glucose curve was higher in the LO and CO rats than in the LC and CC rats. The basal insulinemia and homeostasis model assessment of insulin resistance (HOMA-IR) were lower in the LO group than in the other groups. The total area under the insulin curve for the LO rats was similar to the CC rats, and both were lower than the CO and LC rats. Kitt was higher in the LO, LC and CO groups than in the CC group. Thus, intrauterine protein restriction followed by overfeeding during lactation did not induce obesity, but produced glucose intolerance by impairing pancreatic function in adulthood.

7.
Br J Nutr ; 108(6): 1042-51, 2012 Sep 28.
Article in English | MEDLINE | ID: mdl-22152781

ABSTRACT

Nutritional recovery with a soyabean diet decreases body and fat weights when compared with a casein diet. We investigated whether the reduced adiposity observed in rats recovering from early-life malnutrition with a soyabean diet results from alterations in lipid metabolism in white adipose tissue (WAT) and/or brown adipose tissue (BAT). Male rats from mothers fed either 17 or 6 % protein during pregnancy and lactation were maintained on 17 % casein (CC and LC groups), 17 % soyabean (CS and LS groups) or 6 % casein (LL group) diets over 60 d. The rats maintained on a soyabean diet had similar relative food intakes, but lower body and retroperitoneal WAT weights and a reduced lipid content in the retroperitoneal WAT. The insulin levels were lower in the recovered rats and were elevated in those fed a soyabean diet. Serum T3 concentration and uncoupling protein 1 content in the BAT were decreased in the recovered rats. The thermogenic capacity of the BAT was not affected by the soyabean diet. The lipogenesis rate in the retroperitoneal WAT was similar in all of the groups except for the LL group, which had exacerbated lipogenesis. The enhancement of the lipolysis rate by isoproterenol was decreased in white adipocytes from the soyabean-recovered rats and was elevated in adipocytes from the soyabean-control rats. Thus, in animals maintained on a soyabean diet, the proportions of fat deposits are determined by the lipolysis rate, which differs depending on the previous nutritional status.


Subject(s)
Diet, Vegetarian , Glycine max/chemistry , Intra-Abdominal Fat/metabolism , Lipolysis , Malnutrition/diet therapy , Seeds/chemistry , Adipose Tissue, Brown/metabolism , Adipose Tissue, Brown/pathology , Adiposity , Animals , Cells, Cultured , Diet, Protein-Restricted/adverse effects , Diet, Vegetarian/adverse effects , Female , Intra-Abdominal Fat/pathology , Lactation , Male , Malnutrition/etiology , Malnutrition/metabolism , Malnutrition/pathology , Maternal Nutritional Physiological Phenomena , Pregnancy , Random Allocation , Rats , Rats, Wistar , Retroperitoneal Space
SELECTION OF CITATIONS
SEARCH DETAIL
...