Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Colloids Surf B Biointerfaces ; 210: 112237, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34836708

ABSTRACT

Pulmonary fungal infections lead to damage of the endogenous lung surfactant system. However, the molecular mechanism underlying surfactant inhibition is unknown. ß-D-glucan is the major component of pathogenic fungal cell walls and is also present in organic dust, which increases the risk of respiratory diseases. The objective of this study was to characterize the interaction of this D-glucopyranose polymer with pulmonary surfactant. Our results show that ß-D-glucan induced a concentration-dependent inhibition of the surface adsorption, respreading, and surface tension-lowering activity of surfactant preparations containing surfactant proteins SP-B and SP-C. Our data support a new mechanism of surfactant inhibition that consists in the extraction of phospholipid molecules from surfactant membranes by ß-D-glucan. As a result, surfactant membranes became more fluid, as demonstrated by fluorescence anisotropy, and showed decreased Tm and transition enthalpy. Surfactant preparations containing surfactant protein A (SP-A) were more resistant to ß-D-glucan inhibition. SP-A bound to different ß-D-glucans with high affinity (Kd = 1.5 ±â€¯0.1 nM), preventing and reverting ß-D-glucan inhibitory effects on surfactant interfacial adsorption and partially abrogating ß-D-glucan inhibitory effects on surfactant's reduction of surface tension. We conclude that ß-D-glucan inhibits the biophysical function of surfactant preparations lacking SP-A by subtraction of phospholipids from surfactant bilayers and monolayers. The increased resistance of SP-A-containing surfactant preparations to ß-D-glucan reinforces its use in surfactant replacement therapy.


Subject(s)
Pulmonary Surfactants , Glucans , Phospholipids , Pulmonary Surfactant-Associated Protein A , Pulmonary Surfactant-Associated Protein B
2.
FASEB J ; 35(9): e21778, 2021 09.
Article in English | MEDLINE | ID: mdl-34383971

ABSTRACT

As a result of the relatively few available antifungals and the increasing frequency of resistance to them, the development of novel antifungals is increasingly important. The plant natural product poacic acid (PA) inhibits ß-1,3-glucan synthesis in Saccharomyces cerevisiae and has antifungal activity against a wide range of plant pathogens. However, the mode of action of PA is unclear. Here, we reveal that PA specifically binds to ß-1,3-glucan, its affinity for which is ~30-fold that for chitin. Besides its effect on ß-1,3-glucan synthase activity, PA inhibited the yeast glucan-elongating activity of Gas1 and Gas2 and the chitin-glucan transglycosylase activity of Crh1. Regarding the cellular response to PA, transcriptional co-regulation was mediated by parallel activation of the cell-wall integrity (CWI) and high-osmolarity glycerol signaling pathways. Despite targeting ß-1,3-glucan remodeling, the transcriptional profiles and regulatory circuits activated by caspofungin, zymolyase, and PA differed, indicating that their effects on CWI have different mechanisms. The effects of PA on the growth of yeast strains indicated that it has a mode of action distinct from that of echinocandins, suggesting it is a unique antifungal agent.


Subject(s)
Antifungal Agents/pharmacology , Cell Wall/drug effects , Coumaric Acids/pharmacology , Glycerol/metabolism , Saccharomyces cerevisiae/drug effects , Stilbenes/pharmacology , Transcription, Genetic/drug effects , beta-Glucans/pharmacology , Caspofungin/pharmacology , Cell Wall/genetics , Cell Wall/metabolism , Chitin/pharmacology , Echinocandins/pharmacology , Fungal Proteins/genetics , Gene Expression Regulation, Fungal/drug effects , Gene Expression Regulation, Fungal/genetics , Osmolar Concentration , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Signal Transduction/drug effects , Signal Transduction/genetics , Transcription, Genetic/genetics
3.
Intensive Care Med Exp ; 8(Suppl 1): 48, 2020 Dec 18.
Article in English | MEDLINE | ID: mdl-33336286

ABSTRACT

Patients with liver diseases are at high risk for the development of acute respiratory distress syndrome (ARDS). The liver is an important organ that regulates a complex network of mediators and modulates organ interactions during inflammatory disorders. Liver function is increasingly recognized as a critical determinant of the pathogenesis and resolution of ARDS, significantly influencing the prognosis of these patients. The liver plays a central role in the synthesis of proteins, metabolism of toxins and drugs, and in the modulation of immunity and host defense. However, the tools for assessing liver function are limited in the clinical setting, and patients with liver diseases are frequently excluded from clinical studies of ARDS. Therefore, the mechanisms by which the liver participates in the pathogenesis of acute lung injury are not totally understood. Several functions of the liver, including endotoxin and bacterial clearance, release and clearance of pro-inflammatory cytokines and eicosanoids, and synthesis of acute-phase proteins can modulate lung injury in the setting of sepsis and other severe inflammatory diseases. In this review, we summarized clinical and experimental support for the notion that the liver critically regulates systemic and pulmonary responses following inflammatory insults. Although promoting inflammation can be detrimental in the context of acute lung injury, the liver response to an inflammatory insult is also pro-defense and pro-survival. A better understanding of the liver-lung axis will provide valuable insights into new diagnostic targets and therapeutic strategies for clinical intervention in patients with or at risk for ARDS.

4.
Front Immunol ; 10: 458, 2019.
Article in English | MEDLINE | ID: mdl-30936871

ABSTRACT

Non-typeable Haemophilus influenzae (NTHi) causes persistent respiratory infections in patients with chronic obstructive pulmonary disease (COPD), probably linked to its capacity to invade and reside within pneumocytes. In the alveolar fluid, NTHi is in contact with pulmonary surfactant, a lipoprotein complex that protects the lung against alveolar collapse and constitutes the front line of defense against inhaled pathogens and toxins. Decreased levels of surfactant phospholipids have been reported in smokers and patients with COPD. The objective of this study was to investigate the effect of surfactant phospholipids on the host-pathogen interaction between NTHi and pneumocytes. For this purpose, we used two types of surfactant lipid vesicles present in the alveolar fluid: (i) multilamellar vesicles (MLVs, > 1 µm diameter), which constitute the tensioactive material of surfactant, and (ii) small unilamellar vesicles (SUVs, 0.1 µm diameter), which are generated after inspiration/expiration cycles, and are endocytosed by pneumocytes for their degradation and/or recycling. Results indicated that extracellular pulmonary surfactant binds to NTHi, preventing NTHi self-aggregation and inhibiting adhesion of NTHi to pneumocytes and, consequently, inhibiting NTHi invasion. In contrast, endocytosed surfactant lipids, mainly via the scavenger receptor SR-BI, did not affect NTHi adhesion but inhibited NTHi invasion by blocking bacterial uptake in pneumocytes. This blockade was made possible by inhibiting Akt phosphorylation and Rac1 GTPase activation, which are signaling pathways involved in NTHi internalization. Administration of the hydrophobic fraction of lung surfactant in vivo accelerated bacterial clearance in a mouse model of NTHi pulmonary infection, supporting the notion that the lipid component of lung surfactant protects against NTHi infection. These results suggest that alterations in surfactant lipid levels in COPD patients may increase susceptibility to infection by this pathogen.


Subject(s)
Alveolar Epithelial Cells/drug effects , Haemophilus Infections/prevention & control , Haemophilus influenzae/drug effects , Pulmonary Surfactants/pharmacology , Alveolar Epithelial Cells/metabolism , Animals , Bacterial Adhesion/drug effects , Endocytosis/drug effects , Enzyme Activation/drug effects , Extracellular Vesicles/physiology , Haemophilus Infections/immunology , Haemophilus influenzae/isolation & purification , Haemophilus influenzae/physiology , Host-Pathogen Interactions/drug effects , Humans , Hydrophobic and Hydrophilic Interactions , Liposomes , Male , Mice , Neuropeptides/antagonists & inhibitors , Otitis Media/microbiology , Phosphorylation/drug effects , Protein Processing, Post-Translational/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Pulmonary Disease, Chronic Obstructive/microbiology , Pulmonary Surfactants/immunology , Rats , Rats, Sprague-Dawley , Receptors, Scavenger/antagonists & inhibitors , Receptors, Scavenger/physiology , Specific Pathogen-Free Organisms , rac1 GTP-Binding Protein/antagonists & inhibitors
5.
Front Microbiol ; 8: 276, 2017.
Article in English | MEDLINE | ID: mdl-28298903

ABSTRACT

Lower respiratory tract infections are among the top five leading causes of human death. Fighting these infections is therefore a world health priority. Searching for induced alterations in host gene expression shared by several relevant respiratory pathogens represents an alternative to identify new targets for wide-range host-oriented therapeutics. With this aim, alveolar macrophages were independently infected with three unrelated bacterial (Streptococcus pneumoniae, Klebsiella pneumoniae, and Staphylococcus aureus) and two dissimilar viral (respiratory syncytial virus and influenza A virus) respiratory pathogens, all of them highly relevant for human health. Cells were also activated with bacterial lipopolysaccharide (LPS) as a prototypical pathogen-associated molecular pattern. Patterns of differentially expressed cellular genes shared by the indicated pathogens were searched by microarray analysis. Most of the commonly up-regulated host genes were related to the innate immune response and/or apoptosis, with Toll-like, RIG-I-like and NOD-like receptors among the top 10 signaling pathways with over-expressed genes. These results identify new potential broad-spectrum targets to fight the important human infections caused by the bacteria and viruses studied here.

6.
J Immunol ; 197(2): 590-8, 2016 07 15.
Article in English | MEDLINE | ID: mdl-27271568

ABSTRACT

Lung surfactant protein A (SP-A) plays an important function in modulating inflammation in the lung. However, the exact role of SP-A and the mechanism by which SP-A affects IFN-γ-induced activation of alveolar macrophages (aMϕs) remains unknown. To address these questions, we studied the effect of human SP-A on rat and human aMϕs stimulated with IFN-γ, LPS, and combinations thereof and measured the induction of proinflammatory mediators as well as SP-A's ability to bind to IFN-γ or IFN-γR1. We found that SP-A inhibited (IFN-γ + LPS)-induced TNF-α, iNOS, and CXCL10 production by rat aMϕs. When rat macrophages were stimulated with LPS and IFN-γ separately, SP-A inhibited both LPS-induced signaling and IFN-γ-elicited STAT1 phosphorylation. SP-A also decreased TNF-α and CXCL10 secretion by ex vivo-cultured human aMϕs and M-CSF-derived macrophages stimulated by either LPS or IFN-γ or both. Hence, SP-A inhibited upregulation of IFN-γ-inducible genes (CXCL10, RARRES3, and ETV7) as well as STAT1 phosphorylation in human M-CSF-derived macrophages. In addition, we found that SP-A bound to human IFN-γ (KD = 11 ± 0.5 nM) in a Ca(2+)-dependent manner and prevented IFN-γ interaction with IFN-γR1 on human aMϕs. We conclude that SP-A inhibition of (IFN-γ + LPS) stimulation is due to SP-A attenuation of both inflammatory agents and that the binding of SP-A to IFN-γ abrogates IFN-γ effects on human macrophages, suppressing their classical activation and subsequent inflammatory response.


Subject(s)
Interferon-gamma/immunology , Macrophage Activation/immunology , Macrophages, Alveolar/immunology , Pulmonary Surfactant-Associated Protein A/immunology , Receptors, Interferon/immunology , Animals , Blotting, Western , Cytokines/biosynthesis , Humans , Interferon-gamma/metabolism , Male , Pulmonary Surfactant-Associated Protein A/metabolism , Rats , Rats, Sprague-Dawley , Real-Time Polymerase Chain Reaction , Receptors, Interferon/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...