Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 355(6321): 141, 2017 01 13.
Article in English | MEDLINE | ID: mdl-28082555

ABSTRACT

We detected ribose and related sugars in the organic residues of simulated interstellar ices using multidimensional gas chromatography. Kawai questions the formation of sugar compounds in the ices and suggests that they arise from a classical formose reaction during sample workup for analysis. We disagree with this hypothesis and present additional data to argue that Kawai's criticism does not apply.


Subject(s)
Ice/analysis , Ribose , Extraterrestrial Environment , Organic Chemicals , Ultraviolet Rays
2.
Science ; 352(6282): 208-12, 2016 Apr 08.
Article in English | MEDLINE | ID: mdl-27124456

ABSTRACT

Ribose is the central molecular subunit in RNA, but the prebiotic origin of ribose remains unknown. We observed the formation of substantial quantities of ribose and a diversity of structurally related sugar molecules such as arabinose, xylose, and lyxose in the room-temperature organic residues of photo-processed interstellar ice analogs initially composed of H2O, CH3OH, and NH3 Our results suggest that the generation of numerous sugar molecules, including the aldopentose ribose, may be possible from photochemical and thermal treatment of cosmic ices in the late stages of the solar nebula. Our detection of ribose provides plausible insights into the chemical processes that could lead to formation of biologically relevant molecules in suitable planetary environments.


Subject(s)
Cosmic Radiation , Ice , Origin of Life , RNA/chemistry , Ribose/chemical synthesis , Acetic Acid/chemistry , Ammonia/chemistry , Arabinose/chemical synthesis , Extraterrestrial Environment , Meteoroids , Pentoses/chemical synthesis , Photochemical Processes , Ultraviolet Rays , Xylose/chemical synthesis
3.
Proc Natl Acad Sci U S A ; 112(4): 965-70, 2015 Jan 27.
Article in English | MEDLINE | ID: mdl-25583475

ABSTRACT

Evolved interstellar ices observed in dense protostellar molecular clouds may arguably be considered as part of precometary materials that will later fall on primitive telluric planets, bringing a wealth of complex organic compounds. In our laboratory, experiments reproducing the photo/thermochemical evolution of these ices are routinely performed. Following previous amino acid identifications in the resulting room temperature organic residues, we have searched for a different family of molecules of potential prebiotic interest. Using multidimensional gas chromatography coupled to time-of-flight mass spectrometry, we have detected 10 aldehydes, including the sugar-related glycolaldehyde and glyceraldehyde--two species considered as key prebiotic intermediates in the first steps toward the synthesis of ribonucleotides in a planetary environment. The presence of ammonia in water and methanol ice mixtures appears essential for the recovery of these aldehydes in the refractory organic residue at room temperature, although these products are free of nitrogen. We finally point out the importance of detecting aldehydes and sugars in extraterrestrial environments, in the gas phase of hot molecular clouds, and, more importantly, in comets and in primitive meteorites that have most probably seeded the Earth with organic material as early as 4.2 billion years ago.

4.
Astrobiology ; 11(9): 847-54, 2011 Nov.
Article in English | MEDLINE | ID: mdl-22059641

ABSTRACT

The delivery of extraterrestrial organic materials to primitive Earth from meteorites or micrometeorites has long been postulated to be one of the origins of the prebiotic molecules involved in the subsequent apparition of life. Here, we report on experiments in which vacuum UV photo-irradiation of interstellar/circumstellar ice analogues containing H(2)O, CH(3)OH, and NH(3) led to the production of several molecules of prebiotic interest. These were recovered at room temperature in the semi-refractory, water-soluble residues after evaporation of the ice. In particular, we detected small quantities of hydantoin (2,4-imidazolidinedione), a species suspected to play an important role in the formation of poly- and oligopeptides. In addition, hydantoin is known to form under extraterrestrial, abiotic conditions, since it has been detected, along with various other derivatives, in the soluble part of organic matter of primitive carbonaceous meteorites. This result, together with other related experiments reported recently, points to the potential importance of the photochemistry of interstellar "dirty" ices in the formation of organics in Solar System materials. Such molecules could then have been delivered to the surface of primitive Earth, as well as other telluric (exo-) planets, to help trigger first prebiotic reactions with the capacity to lead to some form of primitive biomolecular activity.


Subject(s)
Exobiology/methods , Extraterrestrial Environment/chemistry , Hydantoins/analysis , Ice/analysis , Organic Chemicals/chemistry , Origin of Life , Photochemistry/methods , Hydantoins/chemistry , Mass Spectrometry , Reference Standards
5.
Phys Life Rev ; 8(3): 307-30, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21924690

ABSTRACT

Proteins of all living organisms including plants, animals, and humans are made up of amino acid monomers that show identical stereochemical L-configuration. Hypotheses for the origin of this symmetry breaking in biomolecules include the absolute asymmetric photochemistry model by which interstellar ultraviolet (UV) circularly polarized light (CPL) induces an enantiomeric excess in chiral organic molecules in the interstellar/circumstellar media. This scenario is supported by a) the detection of amino acids in the organic residues of UV-photo-processed interstellar ice analogues, b) the occurrence of L-enantiomer-enriched amino acids in carbonaceous meteorites, and c) the observation of CPL of the same helicity over large distance scales in the massive star-forming region of Orion. These topics are of high importance in topical biophysical research and will be discussed in this review. Further evidence that amino acids and other molecules of prebiotic interest are asymmetrically formed in space comes from studies on the enantioselective photolysis of amino acids by UV-CPL. Also, experiments have been performed on the absolute asymmetric photochemical synthesis of enantiomer-enriched amino acids from mixtures of astrophysically relevant achiral precursor molecules using UV-circularly polarized photons. Both approaches are based on circular dichroic transitions of amino acids that will be highlighted here as well. These results have strong implications on our current understanding of how life's precursor molecules were possibly built and how life selected the left-handed form of proteinogenic amino acids.


Subject(s)
Amino Acids/radiation effects , Exobiology , Extraterrestrial Environment/chemistry , Photochemical Processes , Amino Acids/chemistry , Amino Acids/metabolism , Animals , Humans , Models, Biological , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL