Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 121
Filter
1.
Biomolecules ; 14(5)2024 May 15.
Article in English | MEDLINE | ID: mdl-38785994

ABSTRACT

BACKGROUND: Fluorescent proteins (FPs) are pivotal reagents for flow cytometry analysis or fluorescent microscopy. A new generation of immunoreagents (fluobodies/chromobodies) has been developed by fusing recombinant nanobodies to FPs. METHODS: We analyzed the quality of such biomolecules by a combination of gel filtration and SDS-PAGE to identify artefacts due to aggregation or material degradation. RESULTS: In the SDS-PAGE run, unexpected bands corresponding to separate fluobodies were evidenced and characterized as either degradation products or artefacts that systematically resulted in the presence of specific FPs and some experimental conditions. The elimination of N-terminal methionine from FPs did not impair the appearance of FP fragments, whereas the stability and migration characteristics of some FP constructs were strongly affected by heating in loading buffer, which is a step samples undergo before electrophoretic separation. CONCLUSIONS: In this work, we provide explanations for some odd results observed during the quality control of fluobodies and summarize practical suggestions for the choice of the most convenient FPs to fuse to antibody fragments.


Subject(s)
Electrophoresis, Polyacrylamide Gel , Electrophoresis, Polyacrylamide Gel/methods , Single-Domain Antibodies/chemistry , Humans , Chromatography, Gel , Flow Cytometry/standards , Flow Cytometry/methods , Quality Control
2.
Clin Transl Med ; 14(3): e1636, 2024 03.
Article in English | MEDLINE | ID: mdl-38533646

ABSTRACT

BACKGROUND: Inflammatory bowel diseases (IBDs) pose significant challenges in terms of treatment non-response, necessitating the development of novel therapeutic approaches. Although biological medicines that target TNF-α (tumour necrosis factor-α) have shown clinical success in some IBD patients, a substantial proportion still fails to respond. METHODS: We designed bispecific nanobodies (BsNbs) with the ability to simultaneously target human macrophage-expressed membrane TNF-α (hmTNF-α) and IL-23. Additionally, we fused the constant region of human IgG1 Fc (hIgG1 Fc) to BsNb to create BsNb-Fc.  Our study encompassed in vitro and in vivo characterization of BsNb and BsNb-Fc. RESULTS: BsNb-Fc exhibited an improved serum half-life, targeting capability and effector function than BsNb. It's demonstrated that BsNb-Fc exhibited superior anti-inflammatory effects compared to the anti-TNF-α mAb (infliximab, IFX) combined with anti-IL-12/IL-23p40 mAb (ustekinumab, UST) by Transwell co-culture assays. Notably, in murine models of acute colitis brought on by 2,4,6-trinitrobenzene sulfonic acid(TNBS) and dextran sulphate sodium (DSS), BsNb-Fc effectively alleviated colitis severity. Additionally, BsNb-Fc outperformed the IFX&UST combination in TNBS-induced colitis, significantly reducing colon inflammation in mice with colitis produced by TNBS and DSS. CONCLUSION: These findings highlight an enhanced efficacy and improved biostability of BsNb-Fc, suggesting its potential as a promising therapeutic option for IBD patients with insufficient response to TNF-α inhibition. KEY POINTS: A bispecific nanobody (BsNb) was created to target TNF-α and IL-23p19, exhibiting high affinity and remarkable stability. BsNb-Fc inhibited the release of cytokines in CD4+T cells during co-culture experiments. BsNb-Fc effectively alleviated colitis severity in mouse model with acute colitis induced by DSS or TNBS, outperforming the IFX&UST combination.


Subject(s)
Colitis , Inflammatory Bowel Diseases , Mice , Humans , Animals , Tumor Necrosis Factor-alpha , Interleukin-23 Subunit p19 , Tumor Necrosis Factor Inhibitors/adverse effects , Colitis/drug therapy , Inflammatory Bowel Diseases/drug therapy , Inflammation
3.
STAR Protoc ; 4(4): 102572, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37917580

ABSTRACT

This overview guides both novices and experienced researchers facing challenging targets to select the most appropriate gene expression system for producing a particular protein. By answering four key questions, readers can determine the most suitable gene expression system following a decision scheme. This guide addresses the most commonly used and accessible systems and provides brief descriptions of the main gene expression systems' key characteristics to assist decision making. Additionally, information has been included for selected less frequently used "exotic" gene expression systems.


Subject(s)
Databases, Pharmaceutical , Ligands , Recombinant Proteins/genetics , Gene Expression/genetics
4.
Biomolecules ; 13(10)2023 10 17.
Article in English | MEDLINE | ID: mdl-37892215

ABSTRACT

BACKGROUND: Adhirons are small (10 kDa) synthetic ligands that might represent an alternative to antibody fragments and to alternative scaffolds such as DARPins or affibodies. METHODS: We prepared a conceptionally new adhiron phage display library that allows the presence of cysteines in the hypervariable loops and successfully panned it against antigens possessing different characteristics. RESULTS: We recovered binders specific for membrane epitopes of plant cells by panning the library directly against pea protoplasts and against soluble C-Reactive Protein and SpyCatcher, a small protein domain for which we failed to isolate binders using pre-immune nanobody libraries. The best binders had a binding constant in the low nM range, were produced easily in bacteria (average yields of 15 mg/L of culture) in combination with different tags, were stable, and had minimal aggregation propensity, independent of the presence or absence of cysteine residues in their loops. DISCUSSION: The isolated adhirons were significantly stronger than those isolated previously from other libraries and as good as nanobodies recovered from a naïve library of comparable theoretical diversity. Moreover, they proved to be suitable reagents for ELISA, flow cytometry, the western blot, and also as capture elements in electrochemical biosensors.


Subject(s)
Peptide Library , Single-Domain Antibodies , Enzyme-Linked Immunosorbent Assay , Single-Domain Antibodies/pharmacology , Complementarity Determining Regions , Epitopes
5.
Bioengineering (Basel) ; 10(10)2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37892841

ABSTRACT

BACKGROUND: Protein complexes provide valuable biological information, but can be difficult to handle. Therefore, technical advancements designed to improve their manipulation are always useful. METHODS: We investigated the opportunity to exploit native agarose gels and the contact blot method for the transfer of native proteins to membranes as means for optimizing the conditions for obtaining stable complexes. As a simple model of protein-protein interactions, an antigen-ligand complex was used in which both proteins were fused to reporters. RESULTS: At each step, it was possible to visualize both the antigen, fused to a fluorescent protein, and the ligand, fused to a monomeric ascorbate peroxidase (APEX) and, as such, a way to tune the protocol. The conditions for the complex formation were adapted by modifying the buffer conditions, the concentration of the proteins and of the cross-linkers. CONCLUSIONS: The procedure is rapid, inexpensive, and the several detection opportunities allow for both the monitoring of complex stability and the preservation of the functionality of its components, which is critical for understanding their biomedical implications and supporting drug discovery. The overall protocol represents a handy alternative to gel filtration, uses very standard and ubiquitous equipment, and can be implemented rapidly and without specific training.

6.
Int J Biol Macromol ; 247: 125733, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37423452

ABSTRACT

Routinely screened antibody fragments usually require further in vitro maturation to achieve the desired biophysical properties. Blind in vitro strategies can produce improved ligands by introducing random mutations into the original sequences and selecting the resulting clones under more and more stringent conditions. Rational approaches exploit an alternative perspective that aims first at identifying the specific residues potentially involved in the control of biophysical mechanisms, such as affinity or stability, and then to evaluate what mutations could improve those characteristics. The understanding of the antigen-antibody interactions is instrumental to develop this process the reliability of which, consequently, strongly depends on the quality and completeness of the structural information. Recently, methods based on deep learning approaches critically improved the speed and accuracy of model building and are promising tools for accelerating the docking step. Here, we review the features of the available bioinformatic instruments and analyze the reports illustrating the result obtained with their application to optimize antibody fragments, and nanobodies in particular. Finally, the emerging trends and open questions are summarized.


Subject(s)
Antibodies , Immunoglobulin Fragments , Reproducibility of Results , Mutation , Antibodies/genetics , Antibody Affinity
7.
Methods Mol Biol ; 2681: 33-45, 2023.
Article in English | MEDLINE | ID: mdl-37405641

ABSTRACT

Phage display is an effective method to retrieve binders specific for a target epitope from a large clone library. Nevertheless, the panning process allows for the accumulation of some contaminant clones into the selected phage pool and, consequently, each clone requires individual screening to verify its actual specificity. This step is time-consuming, independently on the chosen method, and relies on the availability of reliable reagents. Since phages display a single binder responsible for the antigen recognition but their coat is formed by several repeats of the same proteins, the targeting of coat epitopes is often exploited to amplify the signal. Commercial anti-M13 antibodies are commonly labeled with peroxidase or FITC but customized antibodies might be necessary for specific applications. Here, we report a protocol describing the selection of anti-protoplast Adhirons that relies on the availability of nanobodies fused to a fluorescent protein to use during flow cytometry screening. Specifically, when preparing our Adhiron synthetic library, we designed a new phagemid that allows the expression of the clones fused to three tags. These can interact with a large variety of commercial and home-made reagents, selected according to the needs of the downstream characterization process. In the described case, we combined the ALFA-tagged Adhirons with an anti-ALFAtag nanobody fused with the fluorescent protein mRuby3.


Subject(s)
Bacteriophages , Single-Domain Antibodies , Peptide Library , Bacteriophages/genetics , Epitopes
8.
Int J Mol Sci ; 24(7)2023 Mar 24.
Article in English | MEDLINE | ID: mdl-37047104

ABSTRACT

Extracellular vesicles (EVs) have enormous potential for the implementation of liquid biopsy and as effective drug delivery means, but the fulfilment of these expectations requires overcoming at least two bottlenecks relative to their purification, namely the finalization of reliable and affordable protocols for: (i) EV sub-population selective isolation and (ii) the scalability of their production/isolation from complex biological fluids. In this work, we demonstrated that these objectives can be achieved by a conceptually new affinity chromatography platform composed of a macroporous epoxy monolith matrix functionalized with anti-CD63 nanobodies with afflux of samples and buffers regulated through a pump. Such a system successfully captured and released integral EVs from urine samples and showed negligible unspecific binding for circulating proteins. Additionally, size discrimination of eluted EVs was achieved by different elution approaches (competitive versus pH-dependent). The physical characteristics of monolith material and the inexpensive production of recombinant nanobodies make scaling-up the capture unit feasible and affordable. Additionally, the availability of nanobodies for further specific EV biomarkers will allow for the preparation of monolithic affinity filters selective for different EV subclasses.


Subject(s)
Body Fluids , Extracellular Vesicles , Single-Domain Antibodies , Biomarkers/metabolism , Body Fluids/metabolism , Extracellular Vesicles/metabolism , Proteins/metabolism , Single-Domain Antibodies/metabolism , Tetraspanin 30
9.
Biomolecules ; 13(3)2023 03 17.
Article in English | MEDLINE | ID: mdl-36979486

ABSTRACT

Vaccination against dengue virus is challenged by the fact that a generic immune response can induce antibody-dependent-enhancement (ADE) in secondary infections. Only some antibodies targeting a quaternary epitope formed by the dimerization of the virus protein E possess sufficient neutralizing capacity. Therefore, the immunization with anti-idiotypic antibodies of neutralizing antibodies might represent a safe vaccination strategy. Starting from a large pre-immune library, we succeeded in isolating a wide set of anti-idiotypic nanobodies characterized by selective and strong binding to the paratope of the neutralizing antibody 1C10. However, the mice immunized with such constructs did not produce effective antibodies, despite at least some of them eliciting an immune response selective for the nanobody variable regions. The results suggest that complex conformational epitopes might be difficult to be recreated by anti-idiotypic structures. The selection process of the anti-idiotypic candidates might be optimized by applying epitope mapping and modeling approaches aimed at identifying the key residues that is necessary to bind to trigger selective immune response.


Subject(s)
Dengue Virus , Dengue , Single-Domain Antibodies , Animals , Mice , Epitopes/chemistry , Antibodies, Viral , Antibodies, Neutralizing
10.
Nat Methods ; 20(2): 259-267, 2023 02.
Article in English | MEDLINE | ID: mdl-36765136

ABSTRACT

Single-molecule localization microscopy (SMLM) generates data in the form of coordinates of localized fluorophores. Cluster analysis is an attractive route for extracting biologically meaningful information from such data and has been widely applied. Despite a range of cluster analysis algorithms, there exists no consensus framework for the evaluation of their performance. Here, we use a systematic approach based on two metrics to score the success of clustering algorithms in simulated conditions mimicking experimental data. We demonstrate the framework using seven diverse analysis algorithms: DBSCAN, ToMATo, KDE, FOCAL, CAML, ClusterViSu and SR-Tesseler. Given that the best performer depended on the underlying distribution of localizations, we demonstrate an analysis pipeline based on statistical similarity measures that enables the selection of the most appropriate algorithm, and the optimized analysis parameters for real SMLM data. We propose that these standard simulated conditions, metrics and analysis pipeline become the basis for future analysis algorithm development and evaluation.


Subject(s)
Algorithms , Single Molecule Imaging , Cluster Analysis , Benchmarking
12.
Comput Struct Biotechnol J ; 21: 601-613, 2023.
Article in English | MEDLINE | ID: mdl-36659922

ABSTRACT

Random mutagenesis is the natural opportunity for proteins to evolve and biotechnologically it has been exploited to create diversity and identify variants with improved characteristics in the mutant pools. Rational mutagenesis based on biophysical assumptions and supported by computational power has been proposed as a faster and more predictable strategy to reach the same aim. In this work we confirm that substantial improvements in terms of both affinity and stability of nanobodies can be obtained by using combinations of algorithms, even for binders with already high affinity and elevated thermal stability. Furthermore, in silico approaches allowed the development of an optimized bispecific construct able to bind simultaneously the two clinically relevant antigens TNF-α and IL-23 and, by means of its enhanced avidity, to inhibit effectively the apoptosis of TNF-α-sensitive L929 cells. The results revealed that salt bridges, hydrogen bonds, aromatic-aromatic and cation-pi interactions had a critical role in increasing affinity. We provided a platform for the construction of high-affinity bispecific constructs based on nanobodies that can have relevant applications for the control of all those biological mechanisms in which more than a single antigen must be targeted to increase the treatment effectiveness and avoid resistance mechanisms.

13.
Microb Cell Fact ; 21(1): 52, 2022 Apr 07.
Article in English | MEDLINE | ID: mdl-35392897

ABSTRACT

BACKGROUND: Proteins are used as reagents in a broad range of scientific fields. The reliability and reproducibility of experimental data will largely depend on the quality of the (recombinant) proteins and, consequently, these should undergo thorough structural and functional controls. Depending on the downstream application and the biochemical characteristics of the protein, different sets of specific features will need to be checked. RESULTS: A number of examples, representative of recurrent issues and previously published strategies, has been reported that illustrate real cases of recombinant protein production in which careful strategy design at the start of the project combined with quality controls throughout the production process was imperative to obtain high-quality samples compatible with the planned downstream applications. Some proteins possess intrinsic properties (e.g., prone to aggregation, rich in cysteines, or a high affinity for nucleic acids) that require certain precautions during the expression and purification process. For other proteins, the downstream application might demand specific conditions, such as for proteins intended for animal use that need to be endotoxin-free. CONCLUSIONS: This review has been designed to act as a practical reference list for researchers who wish to produce and evaluate recombinant proteins with certain specific requirements or that need particular care for their preparation and storage.


Subject(s)
Reproducibility of Results , Animals , Chromatography, Affinity , Recombinant Proteins/chemistry , Recombinant Proteins/genetics
15.
N Biotechnol ; 69: 36-48, 2022 Jul 25.
Article in English | MEDLINE | ID: mdl-35301156

ABSTRACT

Correct elucidation of physiological and pathological processes mediated by extracellular vesicles (EV) is highly dependent on the reliability of the method used for their purification. Currently available chemical/physical protocols for sample fractionation are time-consuming, often scarcely reproducible and their yields are low. Immuno-capture based approaches could represent an effective purification alternative to obtain homogeneous EV samples. An easy-to-operate chromatography system was set-up for the purification of intact EVs based on a single domain (VHH) antibodies-copolymer matrix suitable for biological samples as different as conditioned cell culture medium and human plasma. Methacrylate-based copolymer is a porous solid support, the chemical versatility of which enables its efficient functionalization with VHHs. The combined analyses of morphological features and biomarker (CD9, CD63 and CD81) presence indicated that the recovered EVs were exosomes. The lipoprotein markers APO-A1 and APO-B were both negative in tested samples. This is the first report demonstrating the successful application of spherical porous methacrylate-based copolymer coupled with VHHs for the exosome isolation from biological fluids. This inexpensive immunoaffinity method has the potential to be applied for the isolation of EVs belonging to different morphological and physiological classes.


Subject(s)
Exosomes , Extracellular Vesicles , Single-Domain Antibodies , Extracellular Vesicles/chemistry , Extracellular Vesicles/metabolism , Extracellular Vesicles/pathology , Humans , Methacrylates/analysis , Methacrylates/metabolism , Polymers/metabolism , Reproducibility of Results
16.
Methods Mol Biol ; 2446: 145-157, 2022.
Article in English | MEDLINE | ID: mdl-35157272

ABSTRACT

Nanobodies are stable molecules that can often fold correctly even in the absence of the disulfide bond(s) that stabilize their three-dimensional conformation. Nevertheless, some nanobodies require the formation of disulfide bonds, and therefore they are commonly expressed from vectors that promote their secretion into the oxidizing environment of the Escherichia coli periplasm. As an alternative, the bacterial cytoplasm can be an effective compartment for producing correctly folded nanobodies when sulfhydryl oxidase and disulfide-bond isomerase activities are co-expressed from a recombinant vector. The larger volume and wider chaperone/foldase availability of the cytoplasm enable the achievement of high yields of both nanobodies and nanobody-tag fusions, independently of their redox requirements. Among other examples, the protocol described here was used to successfully produce nanobody fusions with fluorescent proteins that do not fold correctly in the periplasm, nanobodies with Fc domains, and nanobodies containing free cysteine tags.


Subject(s)
Single-Domain Antibodies , Cytoplasm/metabolism , Indicators and Reagents/metabolism , Oxidoreductases , Protein Disulfide-Isomerases/genetics , Protein Disulfide-Isomerases/metabolism , Single-Domain Antibodies/chemistry
17.
Protein Expr Purif ; 194: 106071, 2022 06.
Article in English | MEDLINE | ID: mdl-35172194

ABSTRACT

Reliable diagnosis is critical to identify infections of SARS-CoV-2 as well as to evaluate the immune response to virus and vaccines. Consequently, it becomes crucial the isolation of sensitive antibodies to use as immunocapture elements of diagnostic tools. The final bottleneck to achieve these results is the availability of enough antigen of good quality. We have established a robust pipeline for the production of recombinant, functional SARS-CoV-2 Spike receptor binding domain (RBD) at high yield and low cost in culture flasks. RBD was expressed in transiently transfected ExpiCHO cells at 32 °C and 5% CO2 and purified up to 40 mg/L. The progressive protein accumulation in the culture medium was monitored with an immunobinding assay in order to identify the optimal collection time. Successively, a two-step chromatographic protocol enabled its selective purification in the monomeric state. RBD quality assessment was positively evaluated by SDS-PAGE, Western Blotting and Mass Spectrometry, while Bio-Layer Interferometry, flow cytometer and ELISA tests confirmed its functionality. This effective protocol for the RBD production in transient eukaryotic system can be immediately extended to the production of RBD mutants.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Antibodies, Viral , Enzyme-Linked Immunosorbent Assay , Humans , Protein Binding , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry
18.
Int J Biol Macromol ; 194: 24-31, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34863830

ABSTRACT

Twist1 promote the bypass of p53 response by interacting with p53 and facilitating its MDM2-mediated degradation. We reasoned that reagents able to interfere with the p53:Twist1 complex might alleviate Twist1 inhibitory effect over p53, thus representing potential therapeutic tools in p53 wild type tumors. From a pre-immune library of llama nanobodies (VHH), we isolated binders targeting the p53 C-terminal region (p53-CTD) involved in the interaction with Twist1 by using recombinant Twist1 as an epitope-specific competitor during elution. Positive hits were validated by proving their capacity to immunoprecipitate p53 and to inhibit Twist1:p53 binding in vitro. Molecular modeling confirmed a preferential docking of positive hits with p53-CTD. D11 VHH activity was validated in human cell models, succeeded in immunoprecipitating endogenous p53 and, similarly to Twist1 knock-down, interfered with p53 turnover, p53 phosphorylation at Serine 392 and affected cell viability. Despite the limited functional effect determined by D11 expression in target cells, our results provide the proof of principle that nanobodies ectopically expressed within a cell, have the capacity to target the assembly of the pro-tumorigenic Twist1:p53 complex. These results disclose novel tools for dissecting p53 biology and lay down the grounds for the development of innovative targeted therapeutic approaches.


Subject(s)
Single-Domain Antibodies/chemistry , Tumor Suppressor Protein p53/chemistry , Twist-Related Protein 1/chemistry , Binding, Competitive , Cell Line , Epitopes/chemistry , Epitopes/immunology , Humans , Models, Molecular , Protein Binding , Protein Conformation , Protein Interaction Domains and Motifs , Recombinant Proteins , Structure-Activity Relationship , Tumor Suppressor Protein p53/metabolism , Twist-Related Protein 1/metabolism
19.
Biosensors (Basel) ; 11(12)2021 Dec 03.
Article in English | MEDLINE | ID: mdl-34940253

ABSTRACT

C-reactive protein (CRP) is an inflammation biomarker that should be quantified accurately during infections and healing processes. Nanobodies are good candidates to replace conventional antibodies in immunodiagnostics due to their inexpensive production, simple engineering, and the possibility to obtain higher binder density on capture surfaces. Starting from the same pre-immune library, we compared the selection output resulting from two independent panning strategies, one exclusively exploiting the phage display and another in which a first round of phage display was followed by a second round of yeast display. There was a partial output convergence between the two methods, since two clones were identified using both panning protocols but the first provided several further different sequences, whereas the second favored the recovery of many copies of few clones. The isolated anti-CRP nanobodies had affinity in the low nanomolar range and were suitable for ELISA and immunoprecipitation. One of them was fused to SpyTag and exploited in combination with SpyCatcher as the immunocapture element to quantify CRP using electrochemical impedance spectroscopy. The sensitivity of the biosensor was calculated as low as 0.21 µg/mL.


Subject(s)
Bacteriophages , C-Reactive Protein/analysis , Camelids, New World , Single-Domain Antibodies , Animals , Enzyme-Linked Immunosorbent Assay , Saccharomyces cerevisiae/genetics
20.
ACS Sustain Chem Eng ; 9(36): 12341-12354, 2021 Sep 13.
Article in English | MEDLINE | ID: mdl-34603855

ABSTRACT

We have developed a simple, robust, and fully transversal approach for the a-la-carte fabrication of functional multimeric nanoparticles with potential biomedical applications, validated here by a set of diverse and unrelated polypeptides. The proposed concept is based on the controlled coordination between Zn2+ ions and His residues in His-tagged proteins. This approach results in a spontaneous and reproducible protein assembly as nanoscale oligomers that keep the original functionalities of the protein building blocks. The assembly of these materials is not linked to particular polypeptide features, and it is based on an environmentally friendly and sustainable approach. The resulting nanoparticles, with dimensions ranging between 10 and 15 nm, are regular in size, are architecturally stable, are fully functional, and serve as intermediates in a more complex assembly process, resulting in the formation of microscale protein materials. Since most of the recombinant proteins produced by biochemical and biotechnological industries and intended for biomedical research are His-tagged, the green biofabrication procedure proposed here can be straightforwardly applied to a huge spectrum of protein species for their conversion into their respective nanostructured formats.

SELECTION OF CITATIONS
SEARCH DETAIL
...