Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Front Cell Infect Microbiol ; 12: 815738, 2022.
Article in English | MEDLINE | ID: mdl-35281455

ABSTRACT

Inflammatory disorders are associated with the activation of tryptophan (TRYP) catabolism via the kynurenine pathway (KP). Several reports have demonstrated the role of KP in the immunopathophysiology of both leprosy and coronavirus disease 19 (COVID-19). The nervous system can be affected in infections caused by both Mycobacterium leprae and SARS-CoV-2, but the mechanisms involved in the peripheral neural damage induced by these infectious agents are not fully understood. In recent years KP has received greater attention due the importance of kynurenine metabolites in infectious diseases, immune dysfunction and nervous system disorders. In this review, we discuss how modulation of the KP may aid in controlling the damage to peripheral nerves and the effects of KP activation on neural damage during leprosy or COVID-19 individually and we speculate its role during co-infection.


Subject(s)
COVID-19 , Leprosy , Peripheral Nervous System Diseases , COVID-19/complications , Humans , Kynurenine/metabolism , Leprosy/complications , SARS-CoV-2 , Tryptophan/metabolism
2.
Front Immunol ; 12: 662307, 2021.
Article in English | MEDLINE | ID: mdl-34354699

ABSTRACT

The treatment of multibacillary cases of leprosy with multidrug therapy (MDT) comprises 12 doses of a combination of rifampicin, dapsone and clofazimine. Previous studies have described the immunological phenotypic pattern in skin lesions in multibacillary patients. Here, we evaluated the effect of MDT on skin cell phenotype and on the Mycobacterium leprae-specific immune response. An analysis of skin cell phenotype demonstrated a significant decrease in MRS1 (SR-A), CXCL10 (IP-10) and IFNG (IFN-γ) gene and protein expression after MDT release. Patients were randomized according to whether they experienced a reduction in bacillary load after MDT. A reduction in CXCL10 (IP-10) in sera was associated with the absence of a reduction in the bacillary load at release. Although IFN-γ production in response to M. leprae was not affected by MDT, CXCL10 (IP-10) levels in response to M. leprae increased in cells from patients who experienced a reduction in bacillary load after treatment. Together, our results suggest that CXCL10 (IP-10) may be a good marker for monitoring treatment efficacy in multibacillary patients.


Subject(s)
Chemokine CXCL10/blood , Leprostatic Agents/therapeutic use , Leprosy/drug therapy , Skin/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Bacterial Load/drug effects , Biomarkers/blood , Chemokine CXCL10/immunology , Drug Therapy, Combination , Female , Humans , Leprostatic Agents/administration & dosage , Leprosy/immunology , Male , Middle Aged , Mycobacterium leprae/immunology , Skin/microbiology , Skin/pathology , Treatment Outcome , Young Adult
3.
JCI Insight ; 6(17)2021 09 08.
Article in English | MEDLINE | ID: mdl-34283811

ABSTRACT

Host genes define the severity of inflammation and immunity but specific loci doing so are unknown. Here we show that TNF receptor superfamily member 13B (TNFRSF13B) variants, which enhance defense against certain pathogens, also control immune-mediated injury of transplants, by regulating innate B cells' functions. Analysis of TNFRSF13B in human kidney transplant recipients revealed that 33% of those with antibody-mediated rejection (AMR) but fewer than 6% of those with stable graft function had TNFRSF13B missense mutations. To explore mechanisms underlying aggressive immune responses, we investigated alloimmunity and rejection in mice. Cardiac allografts in Tnfrsf13b-mutant mice underwent early and severe AMR. The dominance and precocity of AMR in Tnfrsf13b-deficient mice were not caused by increased alloantibodies. Rather, Tnfrsf13b mutations decreased "natural" IgM and compromised complement regulation, leading to complement deposition in allografted hearts and autogenous kidneys. Thus, WT TNFRSF13B and Tnfrsf13b support innate B cell functions that limit complement-associated inflammation; in contrast, common variants of these genes intensify inflammatory responses that help clear microbial infections but allow inadvertent tissue injury to ensue. The wide variation in inflammatory reactions associated with TNFRSF13B diversity suggests polymorphisms could underlie variation in host defense and explosive inflammatory responses that sometimes enhance morbidity associated with immune responses.


Subject(s)
B-Lymphocytes/immunology , Graft Rejection/genetics , Immunity, Innate , Isoantibodies/immunology , Kidney Transplantation/adverse effects , Mutation, Missense , Transmembrane Activator and CAML Interactor Protein/genetics , Animals , B-Lymphocytes/pathology , DNA/genetics , DNA Mutational Analysis , Disease Models, Animal , Female , Genotype , Graft Rejection/immunology , Graft Rejection/pathology , Humans , Lymphocyte Count , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Transgenic , Transmembrane Activator and CAML Interactor Protein/metabolism
4.
Front Immunol ; 12: 674241, 2021.
Article in English | MEDLINE | ID: mdl-34113346

ABSTRACT

Pathogenic mycobacteria species may subvert the innate immune mechanisms and can modulate the activation of cells that cause disease in the skin. Cutaneous mycobacterial infection may present different clinical presentations and it is associated with stigma, deformity, and disability. The understanding of the immunopathogenic mechanisms related to mycobacterial infection in human skin is of pivotal importance to identify targets for new therapeutic strategies. The occurrence of reactional episodes and relapse in leprosy patients, the emergence of resistant mycobacteria strains, and the absence of effective drugs to treat mycobacterial cutaneous infection increased the interest in the development of therapies based on repurposed drugs against mycobacteria. The mechanism of action of many of these therapies evaluated is linked to the activation of autophagy. Autophagy is an evolutionary conserved lysosomal degradation pathway that has been associated with the control of the mycobacterial bacillary load. Here, we review the role of autophagy in the pathogenesis of cutaneous mycobacterial infection and discuss the perspectives of autophagy as a target for drug development and repurposing against cutaneous mycobacterial infection.


Subject(s)
Autophagy/drug effects , Mycobacterium Infections/drug therapy , Mycobacterium Infections/pathology , Skin Diseases, Bacterial/drug therapy , Skin Diseases, Bacterial/pathology , Drug Discovery , Humans , Mycobacterium
5.
JCI Insight ; 6(14)2021 07 22.
Article in English | MEDLINE | ID: mdl-34111031

ABSTRACT

TNFRSF13B encodes the transmembrane activator and CAML interactor (TACI) receptor, which drives plasma cell differentiation. Although TNFRSF13B supports host defense, dominant-negative TNFRSF13B alleles are common in humans and other species and only rarely associate with disease. We reasoned that the high frequency of disruptive TNFRSF13B alleles reflects balancing selection, the loss of function conferring advantage in some settings. Testing that concept, we investigated how a common human dominant-negative variant, TNFRSF13B A181E, imparts resistance to enteric pathogens. Mice engineered to express mono- or biallelic A144E variants of tnrsf13B, corresponding to A181E, exhibited a striking resistance to pathogenicity and transmission of Citrobacter rodentium, a murine pathogen that models enterohemorrhagic Escherichia coli, and resistance was principally owed to natural IgA deficiency in the intestine. In WT mice with gut IgA and in mutant mice reconstituted with enteric IgA obtained from WT mice, IgA induces LEE expression of encoded virulence genes, which confer pathogenicity and transmission. Taken together, our results show that C. rodentium and most likely other enteric organisms appropriated binding of otherwise protective antibodies to signal induction of the virulence program. Additionally, the high prevalence of TNFRSF13B dominant-negative variants reflects balancing selection.


Subject(s)
Citrobacter rodentium/immunology , Colitis/immunology , Enterobacteriaceae Infections/immunology , Immunoglobulin A/immunology , Transmembrane Activator and CAML Interactor Protein/genetics , Alleles , Animals , B-Lymphocytes , Colitis/microbiology , Disease Models, Animal , Disease Resistance/genetics , Enterobacteriaceae Infections/microbiology , Female , Humans , Immunoglobulin A/metabolism , Loss of Function Mutation , Lymphocyte Activation/genetics , Male , Polymorphism, Single Nucleotide/immunology , Transmembrane Activator and CAML Interactor Protein/metabolism
6.
JCI Insight ; 6(9)2021 05 10.
Article in English | MEDLINE | ID: mdl-33769311

ABSTRACT

Abs that neutralize SARS-CoV-2 are thought to provide the most immediate and effective treatment for those severely afflicted by this virus. Because coronavirus potentially diversifies by mutation, broadly neutralizing Abs are especially sought. Here, we report a possibly novel approach to rapid generation of potent broadly neutralizing human anti-SARS-CoV-2 Abs. We isolated SARS-CoV-2 spike protein-specific memory B cells by panning from the blood of convalescent subjects after infection with SARS-CoV-2 and sequenced and expressed Ig genes from individual B cells as human mAbs. All of 43 human mAbs generated in this way neutralized SARS-CoV-2. Eighteen of the forty-three human mAbs exhibited half-maximal inhibitory concentrations (IC50) of 6.7 × 10-12 M to 6.7 × 10-15 M for spike-pseudotyped virus. Seven of the human mAbs also neutralized (with IC50 < 6.7 × 10-12 M) viruses pseudotyped with mutant spike proteins (including receptor-binding domain mutants and the S1 C-terminal D614G mutant). Neutralization of the Wuhan Hu-1 founder strain and of some variants decreased when coding sequences were reverted to germline, suggesting that potency of neutralization was acquired by somatic hypermutation and selection of B cells. These results indicate that infection with SARS-CoV-2 evokes high-affinity B cell responses, some products of which are broadly neutralizing and others highly strain specific. We also identify variants that would potentially resist immunity evoked by infection with the Wuhan Hu-1 founder strain or by vaccines developed with products of that strain, suggesting evolutionary courses that SARS-CoV-2 could take.


Subject(s)
Antibodies, Neutralizing/genetics , Antibodies, Viral/genetics , COVID-19/immunology , SARS-CoV-2/immunology , Adult , Aged , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/immunology , Antibody Specificity , B-Lymphocytes/immunology , Broadly Neutralizing Antibodies/genetics , COVID-19/therapy , COVID-19/virology , Humans , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Variable Region/genetics , Immunologic Memory , Middle Aged , Neutralization Tests , Pandemics , SARS-CoV-2/genetics , Somatic Hypermutation, Immunoglobulin , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
7.
Front Immunol ; 9: 1223, 2018.
Article in English | MEDLINE | ID: mdl-29915584

ABSTRACT

Leprosy reactions are responsible for incapacities in leprosy and represent the major cause of permanent neuropathy. The identification of biomarkers able to identify patients more prone to develop reaction could contribute to adequate clinical management and the prevention of disability. Reversal reaction may occur in unstable borderline patients and also in lepromatous patients. To identify biomarker signature profiles related with the reversal reaction onset, multibacillary patients were recruited and classified accordingly the occurrence or not of reversal reaction during or after multidrugtherapy. Analysis of skin lesion cells at diagnosis of multibacillary leprosy demonstrated that in the group that developed reaction (T1R) in the future there was a downregulation of autophagy associated with the overexpression of TLR2 and MLST8. The autophagy impairment in T1R group was associated with increased expression of NLRP3, caspase-1 (p10) and IL-1ß production. In addition, analysis of IL-1ß production in serum from multibacillary patients demonstrated that patients who developed reversal reaction have significantly increased concentrations of IL-1ß at diagnosis, suggesting that the pattern of innate immune responses could predict the reactional episode outcome. In vitro analysis demonstrated that the blockade of autophagy with 3-methyladenine (3-MA) in Mycobacterium leprae-stimulated human primary monocytes increased the assembly of NLRP3 specks assembly, and it was associated with an increase of IL-1ß and IL-6 production. Together, our data suggest an important role for autophagy in multibacillary leprosy patients to avoid exacerbated inflammasome activation and the onset of reversal reaction.


Subject(s)
Autophagy , Inflammasomes/metabolism , Leprosy, Multibacillary/etiology , Leprosy, Multibacillary/metabolism , Adult , Aged , Biomarkers , Female , Gene Expression Profiling , Gene Expression Regulation , Humans , Immunity, Innate , Interleukin-1beta/metabolism , Leprosy, Multibacillary/pathology , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Male , Middle Aged , Monocytes/immunology , Monocytes/metabolism , Monocytes/microbiology , Mycobacterium leprae/physiology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Signal Transduction , Transcriptome
8.
Front Immunol ; 9: 518, 2018.
Article in English | MEDLINE | ID: mdl-29643852

ABSTRACT

Leprosy is an infectious disease that may present different clinical forms depending on host immune response to Mycobacterium leprae. Several studies have clarified the role of various T cell populations in leprosy; however, recent evidences suggest that local innate immune mechanisms are key determinants in driving the disease to its different clinical manifestations. Leprosy is an ideal model to study the immunoregulatory role of innate immune molecules and its interaction with nervous system, which can affect homeostasis and contribute to the development of inflammatory episodes during the course of the disease. Macrophages, dendritic cells, neutrophils, and keratinocytes are the major cell populations studied and the comprehension of the complex networking created by cytokine release, lipid and iron metabolism, as well as antimicrobial effector pathways might provide data that will help in the development of new strategies for leprosy management.


Subject(s)
Immunity, Innate , Leprosy/immunology , Animals , Humans , Leprosy/pathology , Leprosy/transmission , Mycobacterium leprae/physiology
9.
Microbes Infect ; 19(11): 505-514, 2017 11.
Article in English | MEDLINE | ID: mdl-28684130

ABSTRACT

Our previous study has demonstrated that IL-10 may modulate both indoleamine 2,3-dioxygenase (IDO) and CD163 expression in lepromatous leprosy (LL) cells, favoring Mycobacterium leprae persistence through induction of regulatory pathways and iron storage. Here, we observed that in LL lesion cells there is an increase in the expression of proteins involved in iron metabolism such as hemoglobin (Hb), haptoglobin, heme oxygenase 1 and transferrin receptor 1 (TfR1) when compared to tuberculoid leprosy (BT) cells. We also found increased iron deposits and diminished expression of the iron exporter ferroportin 1 in LL lesion cells. Hemin, but not FeSO4 stimulation, was able to enhance M. leprae viability by a mechanism that involves IDO. Analysis of cell phenotype in lesions demonstrated a predominance of M2 markers in LL when compared with BT lesion cells. A positive correlation between CD163 and PPARG with the bacillary index (BI) was observed. In contrast, TNF, STAT1 and CSF2 presented a negative correlation with the BI. In summary, this study demonstrates that iron may regulate IDO expression by a mechanism that involves IL-10, which may contribute for the predominance of M2-like phenotype in LL lesions that favors the phagocytosis and maintenance of M. leprae in host cells.


Subject(s)
Indoleamine-Pyrrole 2,3,-Dioxygenase/physiology , Iron/physiology , Mycobacterium leprae/physiology , Adult , Female , Humans , Immunoblotting , Immunoenzyme Techniques , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Iron/metabolism , Leprosy, Lepromatous/metabolism , Leprosy, Lepromatous/microbiology , Male , Middle Aged , Mycobacterium leprae/metabolism , Reverse Transcriptase Polymerase Chain Reaction
10.
Infect Immun ; 82(9): 3968-78, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25024361

ABSTRACT

Intracellular Mycobacterium leprae infection modifies host macrophage programming, creating a protective niche for bacterial survival. The milieu regulating cellular apoptosis in the tissue plays an important role in defining susceptible and/or resistant phenotypes. A higher density of apoptotic cells has been demonstrated in paucibacillary leprosy lesions than in multibacillary ones. However, the effect of apoptotic cell removal on M. leprae-stimulated cells has yet to be fully elucidated. In this study, we investigated whether apoptotic cell removal (efferocytosis) induces different phenotypes in proinflammatory (Mϕ1) and anti-inflammatory (Mϕ2) macrophages in the presence of M. leprae. We stimulated Mϕ1 and Mϕ2 cells with M. leprae in the presence or absence of apoptotic cells and subsequently evaluated the M. leprae uptake, cell phenotype, and cytokine pattern in the supernatants. In the presence of M. leprae and apoptotic cells, Mϕ1 macrophages changed their phenotype to resemble the Mϕ2 phenotype, displaying increased CD163 and SRA-I expression as well as higher phagocytic capacity. Efferocytosis increased M. leprae survival in Mϕ1 cells, accompanied by reduced interleukin-15 (IL-15) and IL-6 levels and increased transforming growth factor beta (TGF-ß) and IL-10 secretion. Mϕ1 cells primed with M. leprae in the presence of apoptotic cells induced the secretion of Th2 cytokines IL-4 and IL-13 in autologous T cells compared with cultures stimulated with M. leprae or apoptotic cells alone. Efferocytosis did not alter the Mϕ2 cell phenotype or cytokine secretion profile, except for TGF-ß. Based on these data, we suggest that, in paucibacillary leprosy patients, efferocytosis contributes to mycobacterial persistence by increasing the Mϕ2 population and sustaining the infection.


Subject(s)
Apoptosis/immunology , Leprosy/immunology , Macrophages/immunology , Mycobacterium leprae/immunology , Cell Line, Tumor , Cells, Cultured , Humans , Interleukins/immunology , Jurkat Cells , Leprosy/microbiology , Phagocytosis/immunology , Transforming Growth Factor beta/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...