Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 13(1)2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36615944

ABSTRACT

This paper reports the synthesis and characterization of a graphene oxide-gold nanohybrid (GO-Au) and evaluates its suitability as a test material, e.g., in nano(eco)toxicological studies. In this study, we synthesised graphene oxide (GO) and used it as a substrate for the growth of nano-Au decorations, via the chemical reduction of gold (III) using sodium citrate. The GO-Au nanohybrid synthesis was successful, producing AuNPs (~17.09 ± 4.6 nm) that were homogenously distributed on the GO sheets. They exhibited reproducible characteristics when characterised using UV-Vis, TGA, TEM, FTIR, AFM, XPS and Raman spectroscopy. The nanohybrid also showed good stability in different environmental media and its physicochemical characteristics did not deteriorate over a period of months. The amount of Au in each of the GO-Au nanohybrid samples was highly comparable, suggesting a potential for use as chemical label. The outcome of this research represents a crucial step forward in the development of a standard protocol for the synthesis of GO-Au nanohybrids. It also paves the way towards a better understanding of the nanotoxicity of GO-Au nanohybrid in biological and environmental systems.

2.
Ecotoxicol Environ Saf ; 209: 111776, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33341698

ABSTRACT

This work reports an integrated nanosafety study including the synthesis and characterization of the graphene oxide-silver nanoparticle hybrid material (GO-AgNPs) and its nano-ecotoxicity evaluation in the zebrafish embryo model. The influences of natural organic matter (NOM) and a chorion embryo membrane were considered in this study, looking towards more environmentally realistic scenarios and standardized nanotoxicity testing. The nanohybrid was successfully synthesized using the NaBH4 aqueous method, and AgNPs (~ 5.8 nm) were evenly distributed over the GO surface. GO-AgNPs showed a dose-response acute toxicity: the LC50 was 1.5 mg L-1 for chorionated embryos. The removal of chorion, however, increased this toxic effect by 50%. Furthermore, the presence of NOM mitigated mortality, and LC50 for GO-AgNPs changed respectively from 2.3 to 1.2 mg L-1 for chorionated and de-chorionated embryos. Raman spectroscopy confirmed the ingestion of GO by embryos; but without displaying acute toxicity up to 100 mg L-1, indicating that the silver drove toxicity down. Additionally, it was observed that silver nanoparticle dissolution has a minimal effect on these observed toxicity results. Finally, understanding the influence of chorion membranes and NOM is a critical step towards the standardization of testing for zebrafish embryo toxicity in safety assessments and regulatory issues.


Subject(s)
Embryo, Nonmammalian/drug effects , Graphite/chemistry , Metal Nanoparticles/toxicity , Silver/toxicity , Water Pollutants, Chemical/toxicity , Zebrafish/embryology , Animals , Metal Nanoparticles/chemistry , Oxides , Silver/chemistry , Silver Compounds , Water Pollutants, Chemical/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL