Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Sci Rep ; 14(1): 7249, 2024 03 27.
Article in English | MEDLINE | ID: mdl-38538661

ABSTRACT

Malaria is the leading parasitic disease worldwide, with P. vivax being a major challenge for its control. Several studies have indicated metabolomics as a promising tool for combating the disease. The study evaluated plasma metabolomic profiles of patients with recurrent and non-recurrent P. vivax malaria in the Brazilian Amazon. Metabolites extracted from the plasma of P. vivax-infected patients were subjected to LC-MS analysis. Untargeted metabolomics was applied to investigate the metabolic profile of the plasma in the two groups. Overall, 51 recurrent and 59 non-recurrent patients were included in the study. Longitudinal metabolomic analysis revealed 52 and 37 significant metabolite features from the recurrent and non-recurrent participants, respectively. Recurrence was associated with disturbances in eicosanoid metabolism. Comparison between groups suggest alterations in vitamin B6 (pyridoxine) metabolism, tyrosine metabolism, 3-oxo-10-octadecatrienoate ß-oxidation, and alkaloid biosynthesis II. Integrative network analysis revealed enrichment of other metabolic pathways for the recurrent phenotype, including the butanoate metabolism, aspartate and asparagine metabolism, and N-glycan biosynthesis. The metabolites and metabolic pathways predicted in our study suggest potential biomarkers of recurrence and provide insights into targets for antimalarial development against P. vivax.


Subject(s)
Antimalarials , Malaria, Vivax , Malaria , Humans , Malaria, Vivax/parasitology , Metabolomics , Malaria/parasitology , Metabolome , Antimalarials/therapeutic use
3.
Toxins (Basel) ; 15(6)2023 06 03.
Article in English | MEDLINE | ID: mdl-37368676

ABSTRACT

Malaria is an infectious disease caused by Plasmodium spp. and it is mainly transmitted to humans by female mosquitoes of the genus Anopheles. Malaria is an important global public health problem due to its high rates of morbidity and mortality. At present, drug therapies and vector control with insecticides are respectively the most commonly used methods for the treatment and control of malaria. However, several studies have shown the resistance of Plasmodium to drugs that are recommended for the treatment of malaria. In view of this, it is necessary to carry out studies to discover new antimalarial molecules as lead compounds for the development of new medicines. In this sense, in the last few decades, animal venoms have attracted attention as a potential source for new antimalarial molecules. Therefore, the aim of this review was to summarize animal venom toxins with antimalarial activity found in the literature. From this research, 50 isolated substances, 4 venom fractions and 7 venom extracts from animals such as anurans, spiders, scorpions, snakes, and bees were identified. These toxins act as inhibitors at different key points in the biological cycle of Plasmodium and may be important in the context of the resistance of Plasmodium to currently available antimalarial drugs.


Subject(s)
Anopheles , Antimalarials , Malaria , Plasmodium , Toxins, Biological , Female , Humans , Animals , Antimalarials/pharmacology , Antimalarials/therapeutic use , Venoms/pharmacology , Venoms/therapeutic use , Mosquito Vectors , Malaria/drug therapy , Toxins, Biological/therapeutic use , Plasmodium falciparum
4.
Biomolecules ; 13(3)2023 02 21.
Article in English | MEDLINE | ID: mdl-36979338

ABSTRACT

Bergenin is a glycosidic derivative of trihydroxybenzoic acid that was discovered in 1880 by Garreau and Machelart from the rhizomes of the medicinal plant Bergenia crassifolia (currently: Saxifraga crassifolia-Saxifragaceae), though was later isolated from several other plant sources. Since its first report, it has aroused interest because it has several pharmacological activities, mainly antioxidant and anti-inflammatory. In addition to this, bergenin has shown potential antimalarial, antileishmanial, trypanocidal, antiviral, antibacterial, antifungal, antinociceptive, antiarthritic, antiulcerogenic, antidiabetic/antiobesity, antiarrhythmic, anticancer, hepatoprotective, neuroprotective and cardioprotective activities. Thus, this review aimed to describe the sources of isolation of bergenin and its in vitro and in vivo biological and pharmacological activities. Bergenin is distributed in many plant species (at least 112 species belonging to 34 families). Both its derivatives (natural and semisynthetic) and extracts with phytochemical proof of its highest concentration are well studied, and none of the studies showed cytotoxicity for healthy cells.


Subject(s)
Plant Extracts , Plants, Medicinal , Humans , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plants, Medicinal/chemistry , Antioxidants/chemistry , Benzopyrans/chemistry
6.
Nat Commun ; 12(1): 2349, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33859192

ABSTRACT

Substantial COVID-19 research investment has been allocated to randomized clinical trials (RCTs) on hydroxychloroquine/chloroquine, which currently face recruitment challenges or early discontinuation. We aim to estimate the effects of hydroxychloroquine and chloroquine on survival in COVID-19 from all currently available RCT evidence, published and unpublished. We present a rapid meta-analysis of ongoing, completed, or discontinued RCTs on hydroxychloroquine or chloroquine treatment for any COVID-19 patients (protocol: https://osf.io/QESV4/ ). We systematically identified unpublished RCTs (ClinicalTrials.gov, WHO International Clinical Trials Registry Platform, Cochrane COVID-registry up to June 11, 2020), and published RCTs (PubMed, medRxiv and bioRxiv up to October 16, 2020). All-cause mortality has been extracted (publications/preprints) or requested from investigators and combined in random-effects meta-analyses, calculating odds ratios (ORs) with 95% confidence intervals (CIs), separately for hydroxychloroquine and chloroquine. Prespecified subgroup analyses include patient setting, diagnostic confirmation, control type, and publication status. Sixty-three trials were potentially eligible. We included 14 unpublished trials (1308 patients) and 14 publications/preprints (9011 patients). Results for hydroxychloroquine are dominated by RECOVERY and WHO SOLIDARITY, two highly pragmatic trials, which employed relatively high doses and included 4716 and 1853 patients, respectively (67% of the total sample size). The combined OR on all-cause mortality for hydroxychloroquine is 1.11 (95% CI: 1.02, 1.20; I² = 0%; 26 trials; 10,012 patients) and for chloroquine 1.77 (95%CI: 0.15, 21.13, I² = 0%; 4 trials; 307 patients). We identified no subgroup effects. We found that treatment with hydroxychloroquine is associated with increased mortality in COVID-19 patients, and there is no benefit of chloroquine. Findings have unclear generalizability to outpatients, children, pregnant women, and people with comorbidities.


Subject(s)
COVID-19 Drug Treatment , COVID-19/mortality , Chloroquine/adverse effects , Hydroxychloroquine/adverse effects , Pregnancy Complications, Infectious/mortality , Adult , COVID-19/complications , COVID-19/virology , Child , Chloroquine/administration & dosage , Combined Modality Therapy/adverse effects , Combined Modality Therapy/methods , Comorbidity , Female , Humans , Hydroxychloroquine/administration & dosage , International Cooperation , Odds Ratio , Patient Participation/statistics & numerical data , Pregnancy , Pregnancy Complications, Infectious/drug therapy , Pregnancy Complications, Infectious/virology , Randomized Controlled Trials as Topic/statistics & numerical data , SARS-CoV-2
7.
Malar J ; 16(1): 116, 2017 03 13.
Article in English | MEDLINE | ID: mdl-28288644

ABSTRACT

BACKGROUND: Toll-interacting protein is a negative regulator in the TLR signaling cascade, particularly by impeding the TLR2 and, TLR4 pathway. Recently, TOLLIP was shown to regulate human TLR signaling pathways. Two common TOLLIP polymorphisms (rs5743899 and rs3750920) were reported to be influencing IL-6, TNF and IL-10 expression. In this study, TOLLIP variants were investigated to their relation to Plasmodium vivax malaria in the Brazilian Amazon. METHODS: This cohort study was performed in the municipalities of Careiro and, Manaus, in Western Brazilian Amazon. A total of 319 patients with P. vivax malaria and, 263 healthy controls with no previous history of malaria were included in the study. Genomic DNA was extracted from blood collected on filter paper, using the QIAamp® DNA Mini Kit, according to the manufacturer's suggested protocol. The rs5743899 and rs3750920 polymorphisms of the TOLLIP gene were typed by PCR-RFLP. RESULTS: Homozygous individuals for the rs3750920 T allele gene had twice the risk of developing malaria when compared to individuals homozygous for the C allele (OR 2.0 [95% CI 1.23-3.07]; p = 0.004). In the dominant model, carriers the C allele indicates protection to malaria, carriers of the C allele were compared to individuals with the T allele, and the difference is highly significant (OR 0.52 [95% CI 0.37-0.76]; p = 0.0006). The linkage disequilibrium between the two polymorphisms was weak (r2 = 0.037; D' = 0.27). CONCLUSIONS: These findings suggest that genes involved in the TLRs-pathway may be involved in malaria susceptibility. The association of the TOLLIP rs3750920 T allele with susceptibility to malaria further provides evidence that genetic variations in immune response genes may predispose individuals to malaria.


Subject(s)
Intracellular Signaling Peptides and Proteins/genetics , Malaria, Vivax/genetics , Polymorphism, Single Nucleotide , Adult , Brazil , Cohort Studies , Disease Susceptibility/parasitology , Female , Humans , Malaria, Vivax/parasitology , Male , Middle Aged , Plasmodium vivax/physiology , Polymerase Chain Reaction , Polymorphism, Restriction Fragment Length , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...