Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem ; 102: 117671, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38452407

ABSTRACT

The search for novel anticancer drugs is essential to expand treatment options, overcome drug resistance, reduce toxicity, promote innovation, and tackle the economic impact. The importance of these studies lies in their contribution to advancing cancer research and enhancing patient outcomes in the battle against cancer. Here, we developed new asymmetric hybrids containing two different naphthoquinones linked by a 1,2,3-1H-triazole nucleus, which are potential new drugs for cancer treatment. The antitumor activity of the novel compounds was tested using the breast cancer cell lines MCF-7 and MDA-MB-231, using the non-cancer cell line MCF10A as control. Our results showed that two out of twenty-two substances tested presented potential antitumor activity against the breast cancer cell lines. These potential drugs, named here 12g and 12h were effective in reducing cell viability and promoting cell death of the tumor cell lines, exhibiting minimal effects on the control cell line. The mechanism of action of the novel drugs was assessed revealing that both drugs increased reactive oxygen species production with consequent activation of the AMPK pathway. Therefore, we concluded that 12g and 12h are novel AMPK activators presenting selective antitumor effects.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Naphthoquinones , Humans , Female , MCF-7 Cells , Reactive Oxygen Species/metabolism , Triazoles/pharmacology , Naphthoquinones/pharmacology , AMP-Activated Protein Kinases , Cell Proliferation , Apoptosis , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Drug Screening Assays, Antitumor
2.
Beilstein J Org Chem ; 18: 381-419, 2022.
Article in English | MEDLINE | ID: mdl-35529893

ABSTRACT

Naphthoquinones are important natural or synthetic compounds belonging to the general class of quinones. Many compounds in this class have become drugs that are on the pharmaceutical market for the treatment of various diseases. A special naphthoquinone derivative is menadione, a synthetic naphthoquinone belonging to the vitamin K group. This compound can be synthesized by different methods and it has a broad range of biological and synthetic applications, which will be highlighted in this review.

3.
Eur J Med Chem ; 209: 112859, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33010635

ABSTRACT

Tuberculosis (TB) is one of the most fatal diseases and is responsible for the infection of millions of people around the world. Most recently, scientific frontiers have been engaged to develop new drugs that can overcome drug-resistant TB. Following this direction, using a designed scaffold based on the combination of two separate pharmacophoric groups, a series of menadione-derived selenoesters was developed with good yields. All products were evaluated for their in vitro activity against Mycobacterium tuberculosis H37Rv and attractive results were observed, especially for the compounds 8a, 8c and 8f (MICs 2.1, 8.0 and 8.1 µM, respectively). In addition, 8a, 8c and 8f demonstrated potent in vitro activity against multidrug-resistant clinical isolates (CDCT-16 and CDCT-27) with promising MIC values ranging from 0.8 to 3.1 µM. Importantly, compounds 8a and 8c were found to be non-toxic against the Vero cell line. The SI value of 8a (>23.8) was found to be comparable to that of isoniazid (>22.7), which suggests the possibility of carrying out advanced studies on this derivative. Therefore, these menadione-derived selenoesters obtained as hybrid compounds represent promising new anti-tubercular agents to overcome TB multidrug resistance.


Subject(s)
Antitubercular Agents/pharmacology , Mycobacterium tuberculosis/drug effects , Selenium/pharmacology , Vitamin K 3/pharmacology , Animals , Antitubercular Agents/chemical synthesis , Antitubercular Agents/chemistry , Chlorocebus aethiops , Humans , Models, Molecular , Selenium/chemistry , Tuberculosis/drug therapy , Vero Cells , Vitamin K 3/analogs & derivatives , Vitamin K 3/chemical synthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...