Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Nat Rev Microbiol ; 21(12): 789-804, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37542123

ABSTRACT

Antibiotics have transformed medicine, saving millions of lives since they were first used to treat a bacterial infection. However, antibiotics administered to target a specific pathogen can also cause collateral damage to the patient's resident microbial population. These drugs can suppress the growth of commensal species which provide protection against colonization by foreign pathogens, leading to an increased risk of subsequent infection. At the same time, a patient's microbiota can harbour potential pathogens and, hence, be a source of infection. Antibiotic-induced selection pressure can cause overgrowth of resistant pathogens pre-existing in the patient's microbiota, leading to hard-to-treat superinfections. In this Review, we explore our current understanding of how antibiotic therapy can facilitate subsequent infections due to both loss of colonization resistance and overgrowth of resistant microorganisms, and how these processes are often interlinked. We discuss both well-known and currently overlooked examples of antibiotic-associated infections at various body sites from various pathogens. Finally, we describe ongoing and new strategies to overcome the collateral damage caused by antibiotics and to limit the risk of antibiotic-associated infections.


Subject(s)
Bacterial Infections , Microbiota , Humans , Anti-Bacterial Agents/adverse effects , Bacterial Infections/drug therapy , Bacterial Infections/microbiology
2.
Microbiome ; 11(1): 46, 2023 03 09.
Article in English | MEDLINE | ID: mdl-36894986

ABSTRACT

BACKGROUND: Infections with SARS-CoV-2 have a pronounced impact on the gastrointestinal tract and its resident microbiome. Clear differences between severe cases of infection and healthy individuals have been reported, including the loss of commensal taxa. We aimed to understand if microbiome alterations including functional shifts are unique to severe cases or a common effect of COVID-19. We used high-resolution systematic multi-omic analyses to profile the gut microbiome in asymptomatic-to-moderate COVID-19 individuals compared to a control group. RESULTS: We found a striking increase in the overall abundance and expression of both virulence factors and antimicrobial resistance genes in COVID-19. Importantly, these genes are encoded and expressed by commensal taxa from families such as Acidaminococcaceae and Erysipelatoclostridiaceae, which we found to be enriched in COVID-19-positive individuals. We also found an enrichment in the expression of a betaherpesvirus and rotavirus C genes in COVID-19-positive individuals compared to healthy controls. CONCLUSIONS: Our analyses identified an altered and increased infective competence of the gut microbiome in COVID-19 patients. Video Abstract.


Subject(s)
COVID-19 , Gastrointestinal Microbiome , Microbiota , Humans , Gastrointestinal Microbiome/genetics , SARS-CoV-2/genetics , Multiomics
3.
Curr Opin Microbiol ; 73: 102291, 2023 06.
Article in English | MEDLINE | ID: mdl-36913905

ABSTRACT

The emergence and spread of antimicrobial resistance (AMR) and resistant bacteria, are a global public health challenge. Through horizontal gene transfer, potential pathogens can acquire antimicrobial resistance genes (ARGs) that can subsequently be spread between human, animal, and environmental reservoirs. To understand the dissemination of ARGs and linked microbial taxa, it is necessary to map the resistome within different microbial reservoirs. By integrating knowledge on ARGs in the different reservoirs, the One Health approach is crucial to our understanding of the complex mechanisms and epidemiology of AMR. Here, we highlight the latest insights into the emergence and spread of AMR from the One Health perspective, providing a baseline of understanding for future scientific investigations into this constantly growing global health threat.


Subject(s)
Drug Resistance, Bacterial , One Health , Animals , Humans , Drug Resistance, Bacterial/genetics , Anti-Bacterial Agents/pharmacology , Bacteria/genetics , Genes, Bacterial
4.
Microbiol Spectr ; 11(1): e0406922, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36688698

ABSTRACT

Antimicrobial resistance (AMR) is a universal phenomenon the origins of which lay in natural ecological interactions such as competition within niches, within and between micro- to higher-order organisms. To study these phenomena, it is crucial to examine the origins of AMR in pristine environments, i.e., limited anthropogenic influences. In this context, epilithic biofilms residing in glacier-fed streams (GFSs) are an excellent model system to study diverse, intra- and inter-domain, ecological crosstalk. We assessed the resistomes of epilithic biofilms from GFSs across the Southern Alps (New Zealand) and the Caucasus (Russia) and observed that both bacteria and eukaryotes encoded twenty-nine distinct AMR categories. Of these, beta-lactam, aminoglycoside, and multidrug resistance were both abundant and taxonomically distributed in most of the bacterial and eukaryotic phyla. AMR-encoding phyla included Bacteroidota and Proteobacteria among the bacteria, alongside Ochrophyta (algae) among the eukaryotes. Additionally, biosynthetic gene clusters (BGCs) involved in the production of antibacterial compounds were identified across all phyla in the epilithic biofilms. Furthermore, we found that several bacterial genera (Flavobacterium, Polaromonas, Superphylum Patescibacteria) encode both atimicrobial resistance genes (ARGs) and BGCs within close proximity of each other, demonstrating their capacity to simultaneously influence and compete within the microbial community. Our findings help unravel how naturally occurring BGCs and AMR contribute to the epilithic biofilms mode of life in GFSs. Additionally, we report that eukaryotes may serve as AMR reservoirs owing to their potential for encoding ARGs. Importantly, these observations may be generalizable and potentially extended to other environments that may be more or less impacted by human activity. IMPORTANCE Antimicrobial resistance is an omnipresent phenomenon in the anthropogenically influenced ecosystems. However, its role in shaping microbial community dynamics in pristine environments is relatively unknown. Using metagenomics, we report the presence of antimicrobial resistance genes and their associated pathways in epilithic biofilms within glacier-fed streams. Importantly, we observe biosynthetic gene clusters associated with antimicrobial resistance in both pro- and eukaryotes in these biofilms. Understanding the role of resistance in the context of this pristine environment and complex biodiversity may shed light on previously uncharacterized mechanisms of cross-domain interactions.


Subject(s)
Microbiota , Rivers , Humans , Rivers/microbiology , Ice Cover , Bacteria/genetics , Multigene Family , Biofilms , Anti-Bacterial Agents/pharmacology
5.
Elife ; 112022 Sep 16.
Article in English | MEDLINE | ID: mdl-36111782

ABSTRACT

Biological wastewater treatment plants (BWWTP) are considered to be hotspots for the evolution and subsequent spread of antimicrobial resistance (AMR). Mobile genetic elements (MGEs) promote the mobilization and dissemination of antimicrobial resistance genes (ARGs) and are thereby critical mediators of AMR within the BWWTP microbial community. At present, it is unclear whether specific AMR categories are differentially disseminated via bacteriophages (phages) or plasmids. To understand the segregation of AMR in relation to MGEs, we analyzed meta-omic (metagenomic, metatranscriptomic and metaproteomic) data systematically collected over 1.5 years from a BWWTP. Our results showed a core group of 15 AMR categories which were found across all timepoints. Some of these AMR categories were disseminated exclusively (bacitracin) or primarily (aminoglycoside, MLS and sulfonamide) via plasmids or phages (fosfomycin and peptide), whereas others were disseminated equally by both. Combined and timepoint-specific analyses of gene, transcript and protein abundances further demonstrated that aminoglycoside, bacitracin and sulfonamide resistance genes were expressed more by plasmids, in contrast to fosfomycin and peptide AMR expression by phages, thereby validating our genomic findings. In the analyzed communities, the dominant taxon Candidatus Microthrix parvicella was a major contributor to several AMR categories whereby its plasmids primarily mediated aminoglycoside resistance. Importantly, we also found AMR associated with ESKAPEE pathogens within the BWWTP, and here MGEs also contributed differentially to the dissemination of the corresponding ARGs. Collectively our findings pave the way toward understanding the segmentation of AMR within MGEs, thereby shedding new light on resistome populations and their mediators, essential elements that are of immediate relevance to human health.


Subject(s)
Bacteriophages , Fosfomycin , Water Purification , Humans , Drug Resistance, Microbial/genetics , Wastewater , Bacitracin , Metagenomics , Anti-Bacterial Agents/pharmacology , Bacteriophages/genetics , Aminoglycosides , Sulfonamides , Genes, Bacterial
6.
Nat Commun ; 13(1): 2296, 2022 04 28.
Article in English | MEDLINE | ID: mdl-35484157

ABSTRACT

The emergence and spread of antimicrobial resistance (AMR) represent an ever-growing healthcare challenge worldwide. Nevertheless, the mechanisms and timescales shaping this resistome remain elusive. Using an antibiotic cocktail administered to a murine model along with a longitudinal sampling strategy, we identify the mechanisms by which gut commensals acquire antimicrobial resistance genes (ARGs) after a single antibiotic course. While most of the resident bacterial populations are depleted due to the treatment, Akkermansia muciniphila and members of the Enterobacteriaceae, Enterococcaceae, and Lactobacillaceae families acquire resistance and remain recalcitrant. We identify specific genes conferring resistance against the antibiotics in the corresponding metagenome-assembled genomes (MAGs) and trace their origins within each genome. Here we show that, while mobile genetic elements (MGEs), including bacteriophages and plasmids, contribute to the spread of ARGs, integrons represent key factors mediating AMR in the antibiotic-treated mice. Our findings suggest that a single course of antibiotics alone may act as the selective sweep driving ARG acquisition and incidence in gut commensals over a single mammalian lifespan.


Subject(s)
Anti-Bacterial Agents , Genes, Bacterial , Animals , Anti-Bacterial Agents/pharmacology , Bacteria/genetics , Humans , Mammals/genetics , Metagenome , Mice , Plasmids
7.
Nat Commun ; 13(1): 2168, 2022 04 20.
Article in English | MEDLINE | ID: mdl-35444202

ABSTRACT

In glacier-fed streams, ecological windows of opportunity allow complex microbial biofilms to develop and transiently form the basis of the food web, thereby controlling key ecosystem processes. Using metagenome-assembled genomes, we unravel strategies that allow biofilms to seize this opportunity in an ecosystem otherwise characterized by harsh environmental conditions. We observe a diverse microbiome spanning the entire tree of life including a rich virome. Various co-existing energy acquisition pathways point to diverse niches and the exploitation of available resources, likely fostering the establishment of complex biofilms during windows of opportunity. The wide occurrence of rhodopsins, besides chlorophyll, highlights the role of solar energy capture in these biofilms while internal carbon and nutrient cycling between photoautotrophs and heterotrophs may help overcome constraints imposed by oligotrophy in these habitats. Mechanisms potentially protecting bacteria against low temperatures and high UV-radiation are also revealed and the selective pressure of this environment is further highlighted by a phylogenomic analysis differentiating important components of the glacier-fed stream microbiome from other ecosystems. Our findings reveal key genomic underpinnings of adaptive traits contributing to the success of complex biofilms to exploit environmental opportunities in glacier-fed streams, which are now rapidly changing owing to global warming.


Subject(s)
Ice Cover , Microbiota , Biodiversity , Biofilms , Ecosystem , Microbiota/genetics , Rivers/microbiology
8.
Brief Bioinform ; 22(6)2021 11 05.
Article in English | MEDLINE | ID: mdl-34453168

ABSTRACT

Real-world evaluations of metagenomic reconstructions are challenged by distinguishing reconstruction artifacts from genes and proteins present in situ. Here, we evaluate short-read-only, long-read-only and hybrid assembly approaches on four different metagenomic samples of varying complexity. We demonstrate how different assembly approaches affect gene and protein inference, which is particularly relevant for downstream functional analyses. For a human gut microbiome sample, we use complementary metatranscriptomic and metaproteomic data to assess the metagenomic data-based protein predictions. Our findings pave the way for critical assessments of metagenomic reconstructions. We propose a reference-independent solution, which exploits the synergistic effects of multi-omic data integration for the in situ study of microbiomes using long-read sequencing data.


Subject(s)
Computational Biology/methods , Metagenome , Metagenomics/methods , Drug Resistance, Microbial , High-Throughput Nucleotide Sequencing/methods , Humans
9.
Front Genet ; 12: 666244, 2021.
Article in English | MEDLINE | ID: mdl-34194470

ABSTRACT

In recent years, multi-omic studies have enabled resolving community structure and interrogating community function of microbial communities. Simultaneous generation of metagenomic, metatranscriptomic, metaproteomic, and (meta) metabolomic data is more feasible than ever before, thus enabling in-depth assessment of community structure, function, and phenotype, thus resulting in a multitude of multi-omic microbiome datasets and the development of innovative methods to integrate and interrogate those multi-omic datasets. Specifically, the application of reference-independent approaches provides opportunities in identifying novel organisms and functions. At present, most of these large-scale multi-omic datasets stem from spatial sampling (e.g., water/soil microbiomes at several depths, microbiomes in/on different parts of the human anatomy) or case-control studies (e.g., cohorts of human microbiomes). We believe that longitudinal multi-omic microbiome datasets are the logical next step in microbiome studies due to their characteristic advantages in providing a better understanding of community dynamics, including: observation of trends, inference of causality, and ultimately, prediction of community behavior. Furthermore, the acquisition of complementary host-derived omics, environmental measurements, and suitable metadata will further enhance the aforementioned advantages of longitudinal data, which will serve as the basis to resolve drivers of community structure and function to understand the biotic and abiotic factors governing communities and specific populations. Carefully setup future experiments hold great potential to further unveil ecological mechanisms to evolution, microbe-microbe interactions, or microbe-host interactions. In this article, we discuss the challenges, emerging strategies, and best-practices applicable to longitudinal microbiome studies ranging from sampling, biomolecular extraction, systematic multi-omic measurements, reference-independent data integration, modeling, and validation.

10.
Microbiome ; 9(1): 49, 2021 02 17.
Article in English | MEDLINE | ID: mdl-33597026

ABSTRACT

BACKGROUND: Pathogenic microorganisms cause disease by invading, colonizing, and damaging their host. Virulence factors including bacterial toxins contribute to pathogenicity. Additionally, antimicrobial resistance genes allow pathogens to evade otherwise curative treatments. To understand causal relationships between microbiome compositions, functioning, and disease, it is essential to identify virulence factors and antimicrobial resistance genes in situ. At present, there is a clear lack of computational approaches to simultaneously identify these factors in metagenomic datasets. RESULTS: Here, we present PathoFact, a tool for the contextualized prediction of virulence factors, bacterial toxins, and antimicrobial resistance genes with high accuracy (0.921, 0.832 and 0.979, respectively) and specificity (0.957, 0.989 and 0.994). We evaluate the performance of PathoFact on simulated metagenomic datasets and perform a comparison to two other general workflows for the analysis of metagenomic data. PathoFact outperforms all existing workflows in predicting virulence factors and toxin genes. It performs comparably to one pipeline regarding the prediction of antimicrobial resistance while outperforming the others. We further demonstrate the performance of PathoFact on three publicly available case-control metagenomic datasets representing an actual infection as well as chronic diseases in which either pathogenic potential or bacterial toxins are hypothesized to play a role. In each case, we identify virulence factors and AMR genes which differentiated between the case and control groups, thereby revealing novel gene associations with the studied diseases. CONCLUSION: PathoFact is an easy-to-use, modular, and reproducible pipeline for the identification of virulence factors, bacterial toxins, and antimicrobial resistance genes in metagenomic data. Additionally, our tool combines the prediction of these pathogenicity factors with the identification of mobile genetic elements. This provides further depth to the analysis by considering the genomic context of the pertinent genes. Furthermore, PathoFact's modules for virulence factors, toxins, and antimicrobial resistance genes can be applied independently, thereby making it a flexible and versatile tool. PathoFact, its models, and databases are freely available at https://pathofact.lcsb.uni.lu . Video abstract.


Subject(s)
Anti-Infective Agents/pharmacology , Drug Resistance, Bacterial/genetics , Metagenomics , Software , Virulence Factors/genetics , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/drug effects
11.
ISME Commun ; 1(1): 8, 2021 Mar 26.
Article in English | MEDLINE | ID: mdl-36717704

ABSTRACT

Caesarean section delivery (CSD) disrupts mother-to-neonate transmission of specific microbial strains and functional repertoires as well as linked immune system priming. Here we investigate whether differences in microbiome composition and impacts on host physiology persist at 1 year of age. We perform high-resolution, quantitative metagenomic analyses of the gut microbiomes of infants born by vaginal delivery (VD) or by CSD, from immediately after birth through to 1 year of life. Several microbial populations show distinct enrichments in CSD-born infants at 1 year of age including strains of Bacteroides caccae, Bifidobacterium bifidum and Ruminococcus gnavus, whereas others are present at higher levels in the VD group including Faecalibacterium prausnitizii, Bifidobacterium breve and Bifidobacterium kashiwanohense. The stimulation of healthy donor-derived primary human immune cells with LPS isolated from neonatal stool samples results in higher levels of tumour necrosis factor alpha (TNF-α) in the case of CSD extracts over time, compared to extracts from VD infants for which no such changes were observed during the first year of life. Functional analyses of the VD metagenomes at 1 year of age demonstrate a significant increase in the biosynthesis of the natural antibiotics, carbapenem and phenazine. Concurrently, we find antimicrobial resistance (AMR) genes against several classes of antibiotics in both VD and CSD. The abundance of AMR genes against synthetic (including semi-synthetic) agents such as phenicol, pleuromutilin and diaminopyrimidine are increased in CSD children at day 5 after birth. In addition, we find that mobile genetic elements, including phages, encode AMR genes such as glycopeptide, diaminopyrimidine and multidrug resistance genes. Our results demonstrate persistent effects at 1 year of life resulting from birth mode-dependent differences in earliest gut microbiome colonisation.

SELECTION OF CITATIONS
SEARCH DETAIL
...