Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Phys Med ; 119: 103306, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38335743

ABSTRACT

PURPOSE: Ventilation Perfusion SPECT is important in the diagnostics of e.g. pulmonary embolism and chronic obstructive pulmonary disease. Classical and reverse mismatched defects can be identified by utilizing the ventilation-perfusion ratio. Unfortunately, this ratio is only linear in the ventilation, the scale is not symmetrical regarding classical and reversed mismatches and small perfusion values give rise to artifacts. The ventilation-perfusion (VQ) difference is developed as an alternative. METHODS: For both VQ-ratio and VQ-difference a scaling factor for the perfusion is computed, so that voxels with matched ventilation and perfusion (on average) yield zero signal. The relative VQ-difference is calculated by scaling with the summed VQ-signal in each voxel. The scaled VQ-difference is calculated by scaling with the global maximum of this sum. RESULTS: The relative and scaled differences have a scale from -1 (perfusion only) to + 1 (ventilation only). Image quality of relative VQ-difference and VQ-ratio images is hampered by artifacts from areas with both low perfusion and low ventilation. Ratio and differences have been investigated in ten patients and are shown for three patients (one without defects). Clinical thresholds for the difference images are derived resulting in color maps of relevant (reversed) mismatches with a (reciprocal) ratio larger than two. CONCLUSIONS: The relative ventilation-perfusion difference is a methodological improvement on the ventilation-perfusion ratio, because it has a symmetrical scale and is bound on a closed domain. A better diagnostic value is expected by utilizing the scaled difference, which represents functional difference instead of relative difference.


Subject(s)
Lung , Pulmonary Embolism , Humans , Ventilation-Perfusion Ratio , Lung/diagnostic imaging , Tomography, Emission-Computed, Single-Photon/methods , Pulmonary Embolism/diagnostic imaging , Perfusion
2.
Phys Med ; 116: 103174, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38007296

ABSTRACT

BACKGROUND: In NM-imaging, theoretical curves for the recovery coefficient (RC) of the signal maximum and mean are known for spheres and cubes, if a 3D Gaussian PSF is assumed. The RC of the maximum is also known for cylinders. For these and other shapes empirical equations with one or two fit-parameters have been utilized. METHODS: An equation for the RC for large objects of arbitrary shape is derived and generalized into an empirical equation for smaller objects, which is verified by numerical simulations. The proposed equation is compared to published results on SPECT kidney phantom measurements and to PET measurements on the NEMA IEC PET body phantom with six spheres. RESULTS: The signal loss (1-RC) for large spheres is inversely proportional to the radius, where the slope is proportional to the FWHM of the spatial resolution. For non-spherical shapes the generalized instead of the volume equivalent radius should be utilized. For smaller objects, an equation with one added empirical fit-parameter is presented. It is demonstrated that the EANM-guidelines' two-parameter logistic function results in a poor fit if the theoretical slope and inverse proportionality are forced and it gives a suboptimal fit when both parameters are fitted. CONCLUSIONS: A novel model-based equation for the mean RC-curve is derived. It can be used for arbitrary shapes as long as the sphericity is taken into account and it is accurate down to RC = 10 %. One parameter is directly related to the spatial resolution, while the other is a shape depending fit-parameter.


Subject(s)
Positron-Emission Tomography , Tomography, X-Ray Computed , Positron-Emission Tomography/methods , Tomography, X-Ray Computed/methods , Phantoms, Imaging , Image Processing, Computer-Assisted/methods
3.
Phys Med ; 116: 103166, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37926641

ABSTRACT

The European Council Directive 2013/59/Euratom (BSS Directive) includes optimisation of treatment with radiotherapeutic procedures based on patient dosimetry and verification of the absorbed doses delivered. The present policy statement summarises aspects of three directives relating to the therapeutic use of radiopharmaceuticals and medical devices, and outlines the steps needed for implementation of patient dosimetry for radioactive drugs. To support the transition from administrations of fixed activities to personalised treatments based on patient-specific dosimetry, EFOMP presents a number of recommendations including: increased networking between centres and disciplines to support data collection and development of codes-of-practice; resourcing to support an infrastructure that permits routine patient dosimetry; research funding to support investigation into individualised treatments; inter-disciplinary training and education programmes; and support for investigator led clinical trials. Close collaborations between the medical physicist and responsible practitioner are encouraged to develop a similar pathway as is routine for external beam radiotherapy and brachytherapy. EFOMP's policy is to promote the roles and responsibilities of medical physics throughout Europe in the development of molecular radiotherapy to ensure patient benefit. As the BSS directive is adopted throughout Europe, unprecedented opportunities arise to develop informed treatments that will mitigate the risks of under- or over-treatments.


Subject(s)
Nuclear Medicine , Humans , Radiometry , Policy , Europe
4.
Biochem Biophys Rep ; 34: 101487, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37265596

ABSTRACT

Biliary atresia (BA) is a rare congenital liver disease with unknown etiology, and it is the most common indication for liver transplantation in children. As BA infants suffer from intestinal malabsorption and neurodevelopmental deficits, it is necessary to identify optimal medical and nutritional strategies using appropriate neonatal animal models. We aim to determine the feasibility of using newborn piglets with surgically induced cholestasis (bile duct ligation (BDL)) to mimic clinical features of BA. Six piglets were subjected to abdominal surgery on day 4 after birth. The bile ducts were ligated, and the piglet were followed for up to 12 days. On day 12 the piglets were subjected to a hepatobiliary scintigraphy using the tracer radiolabeled Technetium(99m-tc)-mebrofenin, and blood samples were collected for biochemical profiling. Of the six piglets, hepatobiliary scintigraphy verified that two piglets (BDL) had no excretion of bile into the duodenum, i.e. full cholestasis with a hepatic extraction fraction of 84-87% and clearance time of 230-318 min. One piglet (SHAM) had bile excretion to the duodenum. In accordance with this, the BDL piglets had steatorrhea, and increased levels of bilirubin and gammaglutamyl transferase (GGT). The last three piglets were euthanized due to bile leakage or poor growth. Surgically induced cholestasis in young piglets, may offer an animal model that displays clinical characteristics of biliary atresia, including malabsorption, hyperbilirubinaemia, increased GGT and reduced hepatic excretory function. Following refinement, this animal model may be used to optimize feeding strategies to secure optimal nutrition and neurodevelopment for neonatal cholestasis/BA patients.

5.
Nucl Med Commun ; 42(2): 160-168, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33105398

ABSTRACT

INTRODUCTION: Ventilation and perfusion single-photon emission computed tomography combined with computed tomography (SPECT/CT) is a powerful tool to assess the state of the lungs in chronic obstructive pulmonary disease (COPD). 81mKrypton is a gaseous ventilation tracer and distributes similarly to air, but is not widely available and relatively expensive. 99mTc-Technegas is cheaper and has wider availability, but is an aerosol, which may deposit in hot spots as the severity of COPD increases. In this study, 81mKrypton and 99mTc-Technegas were compared quantitatively in patients with severe COPD. METHODS: The penetration ratio, the heterogeneity index (with and without band filtering for relevant clinical sizes) and hot spot appearance were assessed in eleven patients with severe COPD that underwent simultaneous dual-isotope ventilation SPECT/CT with both 99mTc-Technegas and 81mKrypton. RESULTS: Significant differences were found in the penetration ratio for the medium energy general purpose (MEGP) collimators, but not for the low energy general purpose (LEGP) collimators. The difference in the overall and the band filtered heterogeneity index was significant in most cases. All patients suffered from 99mTc-Technegas hot spots in at least one lung. Comparison of MEGP 81mKrypton and LEGP Technegas scans revealed similar results as the comparison for the MEGP collimators. CONCLUSION: Caution should be taken when replacing 81mKrypton with 99mTc-Technegas as a ventilation tracer in patients with severe COPD as there are significant differences in the distribution of the tracers over the lungs. Furthermore, this patient group is prone to 99mTc-Technegas hot spots and might need additional scanning if hot spots severely hamper image interpretation.


Subject(s)
Krypton , Pulmonary Disease, Chronic Obstructive/diagnostic imaging , Pulmonary Ventilation , Sodium Pertechnetate Tc 99m , Technetium , Tomography, Emission-Computed, Single-Photon , Adult , Female , Humans , Male , Middle Aged , Pulmonary Disease, Chronic Obstructive/physiopathology
6.
Diagnostics (Basel) ; 10(10)2020 Oct 09.
Article in English | MEDLINE | ID: mdl-33050245

ABSTRACT

Increased sympathetic activity is suggested to be part of the pathogenesis in several diseases. Methods to evaluate sympathetic activity and renal nervous denervation procedural success are lacking. Scintigraphy using the norepinephrine analog Iodine-123 Metaiodobenzylguanidine (123I-MIBG) might provide information on renal sympathetic nervous activity. Renal transplantation induces complete denervation of the kidney and as such represents an ideal model to evaluate the renal 123I-MIBG scintigraphy method. The aim of this study was to evaluate whether renal 123I-MIBG scintigraphy can detect changes in renal sympathetic nervous activity following renal transplantation. Renal 123I-MIBG scintigraphy was performed in eleven renal transplant recipients at 1, 3, and 6 months following transplantation and in their respective living donors prior to their kidney donation. Relative uptake as well as washout was obtained. In transplanted patients, the relative 4 h uptake of 123I-MIBG, as measured by the kidney/background ratio, was 2.7 (0.4) (mean (SD)), 2.7 (0.5), and 2.5 (0.4) at 1, 3, and 6 months post-transplantation, respectively, as compared with the 4.0 (0.4) value in the donor kidney before donor nephrectomy (p < 0.01). There was no significant change in washout-rate between pre-transplantation and any of the follow-up time points. Living donor kidney transplantation was at 6 months post transplantation, associated with an almost 40% reduction in the relative 4 h 123I-MIBG uptake of the kidney. Further studies will help to fully establish its implications as a marker of renal innervation or denervation.

8.
Eur J Nucl Med Mol Imaging ; 47(3): 729-733, 2020 03.
Article in English | MEDLINE | ID: mdl-31728589

ABSTRACT

In the present study, we compared estimates of split renal function (SRF) in paediatric patients of various diagnostic subgroups by 99mTc-dimercaptosuccinic acid (DMSA) scintigraphy using either geometric mean (GM) based on planar scans or a volume of interest (VOI)-based analysis on single photon emission tomography combined with low-dose CT (SPECT/ldCT). Two experienced physicians blinded to patient diagnosis retrospectively analysed all paediatric 99mTc-DMSA scintigraphies that were conducted in our department between 2011 and 2016 and which included both a planar scan and SPECT/ldCT. All scintigraphies were performed on either a Phillips Precedence 16 slice CT or a Siemens Symbia 16 slice CT. SRF was estimated from planar scintigraphy using the geometric mean (GM), while the VOI-based analysis (VBA) was used for kidney segmentation on SPECT/ldCT. RESULTS: A total of 68 scintigraphies were included. A Bland-Altman plot-based analysis showed a bias for SRF of 2.1% with limits of agreement from - 7.5 to + 11.7% for the whole data set but showed larger differences between the two methods outside the normal range of 45-55%. In the GM-based SRF analyses, 29 cases were found to be outside the normal range, and in seven of these, VBA showed normal SRF. In the remaining 39 cases, VBA showed an abnormal SRF in only one case. CONCLUSION: Approximately a quarter of planar DMSA scintigraphies that show an abnormal SRF in paediatric patients may be normal when assessed by SPECT/ldCT, which likely reflects underestimation of the kidney with the poorest function when assessed by GM due to the lack of attenuation correction. Planar scans that show an abnormal SRF in paediatric patients should thus preferably be supplemented by SPECT/ldCT.


Subject(s)
Technetium Tc 99m Dimercaptosuccinic Acid , Tomography, Emission-Computed, Single-Photon , Child , Humans , Kidney/diagnostic imaging , Radionuclide Imaging , Retrospective Studies
9.
Scand J Gastroenterol ; 54(4): 485-491, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30924709

ABSTRACT

Objectives: Pediatric liver disease (PLD) covers a variety of etiologies and severities, from mild temporary illness to diseases with fatal outcomes. There is a demand for minimally invasive and reliable measures for assessment of the severity of PLD. Indocyanine green (ICG) elimination kinetics to estimate hepatic function has been used in adults for decades, however, due to invasiveness, the use in PLD is still limited. The aim of the present study was to evaluate minimally invasive estimation of ICG elimination by pulse spectrophotometry (ICGLi), in comparison with traditional spectrophotometry using serial blood samples (ICGbs). Methods: One hundred children aged 0-18 years were included in the study. ICG elimination kinetics was measured with ICGLi and ICGbs, and results compared by failure rates, mean difference, limits of agreement, Bland Altman plots and linear regression analysis. Plasma disappearance rates (PDRLi and PDRbs) were used for comparison. Results: One hundred and twelve simultaneous measurements in 87 patients were performed successfully. Mean difference for PDR (%/min) was 3.58 (95% CI 2.69; 4.47). Limits of agreement were -5.06; 12.22. A linear correlation between the two methods with a regression coefficient of 0.83 (SE 0.02 95% CI 0.80; 0.87) was found. For conversion we computed the following equation; PDRbs = 0.83 × PDRLi. Conclusions: The present study shows that ICG PDR can be obtained by a minimally invasive method and thus replace measures by serial blood samples in children with liver disease of different etiologies and severities. However, a systematic relative difference between the two methods exists. Our proposed correction factor needs to be validated in larger cohorts.


Subject(s)
Indocyanine Green/pharmacokinetics , Liver Function Tests/methods , Liver/physiopathology , Spectrophotometry/methods , Adolescent , Child , Child, Preschool , Coloring Agents/pharmacokinetics , Denmark , Female , Humans , Infant , Infant, Newborn , Linear Models , Liver Diseases/diagnosis , Liver Diseases/physiopathology , Male , Metabolic Clearance Rate
10.
EJNMMI Phys ; 4(1): 8, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28130765

ABSTRACT

BACKGROUND: [123I]FP-CIT is a well-established radiotracer for the diagnosis of dopaminergic degenerative disorders. The European Normal Control Database of DaTSCAN (ENC-DAT) of healthy controls has provided age and gender-specific reference values for the [123I]FP-CIT specific binding ratio (SBR) under optimised protocols for image acquisition and processing. Simpler reconstruction methods, however, are in use in many hospitals, often without implementation of attenuation and scatter corrections. This study investigates the impact on the reference values of simpler approaches using two quantifications methods, BRASS and Southampton, and explores the performance of the striatal phantom calibration in their harmonisation. RESULTS: BRASS and Southampton databases comprising 123 ENC-DAT subjects, from gamma cameras with parallel collimators, were reconstructed using filtered back projection (FBP) and iterative reconstruction OSEM without corrections (IRNC) and compared against the recommended OSEM with corrections for attenuation and scatter and septal penetration (ACSC), before and after applying phantom calibration. Differences between databases were quantified using the percentage difference of their SBR in the dopamine transporter-rich striatum, with their significance determined by the paired t test with Bonferroni correction. Attenuation and scatter losses, measured from the percentage difference between IRNC and ACSC databases, were of the order of 47% for both BRASS and Southampton quantifications. Phantom corrections were able to recover most of these losses, but the SBRs remained significantly lower than the "true" values (p < 0.001). Calibration provided, in fact, "first order" camera-dependent corrections, but could not include "second order" subject-dependent effects, such as septal penetration from extra-cranial activity. As for the ACSC databases, phantom calibration was instrumental in compensating for partial volume losses in BRASS (~67%, p < 0.001), while for the Southampton method, inherently free from them, it brought no significant changes and solely corrected for residual inter-camera variability (-0.2%, p = 0.44). CONCLUSIONS: The ENC-DAT reference values are significantly dependent on the reconstruction and quantification methods and phantom calibration, while reducing the major part of their differences, is unable to fully harmonize them. Clinical use of any normal database, therefore, requires consistency with the processing methodology. Caution must be exercised when comparing data from different centres, recognising that the SBR may represent an "index" rather than a "true" value.

11.
EJNMMI Phys ; 2(1): 3, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26501805

ABSTRACT

BACKGROUND: CT-based attenuation correction (CT-AC) using contrast-enhancement CT impacts (111)In-SPECT image quality and quantification. In this study we assessed and evaluated the effect. METHODS: A phantom (5.15 L) was filled with an aqueous solution of In-111. Three SPECT/CT scans were performed: (A) no IV contrast, (B) with 100-mL IV contrast, and (C) with 200-mL IV contrast added. Scan protocol included a localization CT, a low-dose CT (LD), and a full-dose CT (FD). Phantom, LD and FD scan series were performed at 90, 120, and 140 kVp. Phantom data were evaluated looking at mean counts in a central volume. Ten patients referred for (111)In-octreotide scintigraphy were scanned according to our clinical (111)In-SPECT/CT protocol including a topogram, a LD (140 kVp), and a FD (120 kVp). The FD/contrast-enhanced CT was acquired in both arterial (FDAP) and venous phase (FDVP) following a mono-phasic IV injection of 125-mL Optiray (4.5 mL/s). For patient data, we report image quality, Krenning scores, and mean/max values for liver and tumor regions. RESULTS: Phantoms: in uncorrected emission data, mean counts (average ± SD) decreased with increasing IV concentration: (A) 119 ± 9, (B) 113 ± 8, and (C) 110 ± 9. For all attenuation correction (AC) scans, the mean values increased with increasing iodine concentration. PATIENTS: there were no visible artifacts in single photon emission computed tomography (SPECT) following CT-AC with contrast-enhanced CT. The average score of image quality was 4.1 ± 0.3, 3.8 ± 0.4, and 4.2 ± 0.4 for LD, arterial phase, and venous phase, respectively. A total of 16 lesions were detected. The Krenning scores of 13/16 lesions were identical across all scan series. The max pixel values for the 16 lesions showed generally lower values for LD than for contrast-enhanced CT. CONCLUSIONS: In (111)In-SPECT/CT imaging of phantoms and patients, the use of IV CT contrast did neither degrade the SPECT image quality nor affect the clinical Krenning score. Reconstructed counts in healthy liver tissues were unaffected, and there was a generally lower count value in lesions following CT-AC based on the LD non-enhanced images. Overall, for clinical interpretation, no separate low-dose CT is required for CT-AC in (111)In-SPECT/CT.

12.
Phys Med Biol ; 60(14): 5711-5, 2015 Jul 21.
Article in English | MEDLINE | ID: mdl-26147353

ABSTRACT

In order to be able to calculate half-count images from already acquired data, White and Lawson published their method based on Poisson resampling. They verified their method experimentally by measurements with a Co-57 flood source. In this comment their results are reproduced and confirmed by a direct numerical simulation in Matlab. Not only Poisson resampling, but also two direct redrawing methods were investigated. Redrawing methods were based on a Poisson and a Gaussian distribution. Mean, standard deviation, skewness and excess kurtosis half-count/full-count ratios were determined for all methods, and compared to the theoretical values for a Poisson distribution. Statistical parameters showed the same behavior as in the original note and showed the superiority of the Poisson resampling method. Rounding off before saving of the half count image had a severe impact on counting statistics for counts below 100. Only Poisson resampling was not affected by this, while Gaussian redrawing was less affected by it than Poisson redrawing. Poisson resampling is the method of choice, when simulating half-count (or less) images from full-count images. It simulates correctly the statistical properties, also in the case of rounding off of the images.


Subject(s)
Image Enhancement/methods , Nuclear Medicine/methods , Software
13.
J Nucl Med ; 56(9): 1386-90, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26182972

ABSTRACT

UNLABELLED: Here we compare translocator protein (TSPO) imaging using 6-chloro-2-(4'-(123)I-iodophenyl)-3-(N,N-diethyl)-imidazo[1,2-a]pyridine-3-acetamide SPECT ((123)I-CLINDE) and amino acid transport imaging using O-(2-(18)F-fluoroethyl)-l-tyrosine PET ((18)F-FET) and investigate whether (123)I-CLINDE is superior to (18)F-FET in predicting progression of glioblastoma multiforme (GBM) at follow-up. METHODS: Three patients with World Health Organization grade IV GBM were scanned with (123)I-CLINDE SPECT, (18)F-FET PET, and gadolinium-enhanced MR imaging. Molecular imaging data were compared with follow-up gadolinium-enhanced MR images or contrast-enhanced CT scans. RESULTS: The percentage overlap between volumes of interest (VOIs) of increased (18)F-FET uptake and (123)I-CLINDE binding was variable (12%-42%). The percentage overlap of MR imaging baseline VOIs was greater for (18)F-FET (79%-93%) than (123)I-CLINDE (15%-30%). In contrast, VOIs of increased contrast enhancement at follow-up compared with baseline overlapped to a greater extent with baseline (123)I-CLINDE VOIs than (18)F-FET VOIs (21% vs. 8% and 72% vs. 55%). CONCLUSION: Our preliminary results suggest that TSPO brain imaging in GBM may be a useful tool for predicting tumor progression at follow-up and may be less susceptible to changes in blood-brain barrier permeability than (18)F-FET. Larger studies are warranted to test the clinical potential of TSPO imaging in GBM, including presurgical planning and radiotherapy.


Subject(s)
Brain Neoplasms/metabolism , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Glioblastoma/metabolism , Receptors, GABA/metabolism , Tomography, Emission-Computed/methods , Tyrosine/analogs & derivatives , Aged , Biomarkers, Tumor/metabolism , Brain Neoplasms/diagnosis , Female , Fluorodeoxyglucose F18/pharmacokinetics , Gadolinium , Glioblastoma/diagnosis , Humans , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Male , Middle Aged , Molecular Imaging , Radiopharmaceuticals/pharmacokinetics , Reproducibility of Results , Sensitivity and Specificity , Tissue Distribution , Tyrosine/pharmacokinetics
14.
J Nucl Med ; 55(12): 1966-72, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25453044

ABSTRACT

UNLABELLED: This study provides the first comprehensive quantification of translocator protein (TSPO) binding using SPECT and 6-chloro-2-(4'-(123)I-iodophenyl)-3-(N,N-diethyl)-imidazo[1,2-a]pyridine-3-acetamide ((123)I-CLINDE) in neurologic patients. (123)I-CLINDE is structurally related to well-known PET ligands such as (18)F-PBR111 and (18)F-DPA-714. METHODS: Six patients with cerebral stroke and 4 patients with glioblastoma multiforme (GBM) underwent 150-min dynamic SPECT scans with arterial blood sampling. Four of the patients were rescanned. All patients were genotyped for the rs6971 polymorphism. Volumes of interest were delineated on the individual SPECT scans and the coregistered MR images. Compartmental and graphical models using arterial input or the cerebellum as a reference region were used to quantify (123)I-CLINDE binding. RESULTS: Among the 6 models investigated, the 2-tissue-compartment model with arterial input described the time-activity data best. Time-stability analyses suggested that acquisition time should be at least 90 min. Intersubject variation in the cerebellar distribution volume (VT) was clearly related to the TSPO genotype. In the stroke patients the VT in the periinfarction zone, compared with VT in the ipsilateral cerebellum, ranged from 1.4 to 3.4, and in the GBM patients the VT in the tumor, compared with the VT in the cerebellum, ranged from 1.8 to 3.4. In areas of gadolinium extravasation, (123)I-CLINDE binding parameters were not significantly changed. Thus, (123)I-CLINDE binding does not appear to be importantly affected by blood-brain barrier disruption. CONCLUSION: As demonstrated within a group of stroke and GBM patients, (123)I-CLINDE SPECT can be used for quantitative assessment of TSPO expression in vivo. Because of the absence of a region devoid of TSPO, reference tissue models should be used with caution. The 2-tissue-compartment kinetic analysis of a 90-min dynamic scan with arterial blood sampling is recommended for the quantification of (123)I-CLINDE binding with SPECT.


Subject(s)
Bridged Bicyclo Compounds, Heterocyclic/pharmacokinetics , Radiopharmaceuticals/pharmacokinetics , Receptors, GABA/metabolism , Tomography, Emission-Computed, Single-Photon/methods , Adult , Aged , Brain/diagnostic imaging , Brain Neoplasms/diagnostic imaging , Female , Genotype , Glioblastoma/diagnostic imaging , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Male , Middle Aged , Receptors, GABA/genetics , Stroke/diagnostic imaging , Young Adult
15.
Nucl Med Commun ; 35(5): 522-33, 2014 May.
Article in English | MEDLINE | ID: mdl-24525900

ABSTRACT

PURPOSE: Patient-specific dosimetry of lutetium-177 ((177)Lu)-DOTATATE treatment in neuroendocrine tumours is important, because uptake differs across patients. Single photon emission computer tomography (SPECT)-based dosimetry requires a conversion factor between the obtained counts and the activity, which depends on the collimator type, the utilized energy windows and the applied scatter correction techniques. In this study, energy window subtraction-based scatter correction methods are compared experimentally and quantitatively. MATERIALS AND METHODS: (177)Lu SPECT images of a phantom with known activity concentration ratio between the uniform background and filled hollow spheres were acquired for three different collimators: low-energy high resolution (LEHR), low-energy general purpose (LEGP) and medium-energy general purpose (MEGP). Counts were collected in several energy windows, and scatter correction was performed by applying different methods such as effective scatter source estimation (ESSE), triple-energy and dual-energy window, double-photopeak window and downscatter correction. The intensity ratio between the spheres and the background was measured and corrected for the partial volume effect and used to compare the performance of the methods. RESULTS: Low-energy collimators combined with 208 keV energy windows give rise to artefacts. For the 113 keV energy window, large differences were observed in the ratios for the spheres. For MEGP collimators with the ESSE correction technique, the measured ratio was close to the real ratio, and the differences between spheres were small. CONCLUSION: For quantitative (177)Lu imaging MEGP collimators are advised. Both energy peaks can be utilized when the ESSE correction technique is applied. The difference between the calculated and the real ratio is less than 10% for both energy windows.


Subject(s)
Image Processing, Computer-Assisted/methods , Octreotide/analogs & derivatives , Organometallic Compounds , Scattering, Radiation , Tomography, Emission-Computed, Single-Photon/methods , Phantoms, Imaging , Radiometry
16.
EJNMMI Phys ; 1(1): 10, 2014 Dec.
Article in English | MEDLINE | ID: mdl-26501452

ABSTRACT

Due to low counts in an (111)In single photon emission computed tomography (SPECT) scan, a large part of the head was missing in the reconstructed images on Philips Extended Brilliance Workspace (EBW) and IntelliSpace Portal (ISP) workstations. This problem occurred for the ordered subsets expectation maximization (OSEM) algorithm with and without resolution recovery (Astonish), but not for filtered backprojection (FBP) or maximum likelihood expectation maximization (MLEM). There were also underflow problems because the images are stored as integers resulting in a loss of intensity resolution and color banding.Philips EBW2.0 and ISP5.02 workstations upscale low-count images, but the result is not always optimal, for example, in the case of low counts in one part and more counts in another part of an image. On these workstations, the missing head artefact problem could be resolved by applying a Hann pre-filter (with a cutoff at the Nyquist frequency, which only influences the filtering) in the reconstruction process. Upscaling of the projection data prior to reconstruction did not recover the head in the images, neither did limiting the reconstructed volume to the low-count part of interest.Underflow problems were partially solved by the new version 2.0 of the Philips EBW and ISP stations, although situations could arise where underflow still poses a problem. A solution for the underflow problems is to upscale the raw projection data before reconstruction. While this results in a pure upscaling of the FBP reconstruction, the effect in iterative statistical reconstruction is not only upscaling of the intensities because the assumption of Poisson statistics of the data is violated. However, the influence of this last matter seems limited.Reconstruction of studies with low counts in relevant areas should be performed with care. Reconstruction artefacts and scaling issues can easily arise.

17.
Am J Nucl Med Mol Imaging ; 2(4): 458-74, 2012.
Article in English | MEDLINE | ID: mdl-23145362

ABSTRACT

After more than 20 years of research, a fully integrated PET/MR scanner was launched in 2010 enabling simultaneous acquisition of PET and MR imaging. Currently, no clinical indication for combined PET/MR has been established, however the expectations are high. In this paper we will discuss some of the challenges inherent in this new technology, but focus on potential applications for simultaneous PET/MR in the field of oncology. Methods and tracers for use with the PET technology will be familiar to most readers of this journal; thus this paper aims to provide a short and basic introduction to a number of different MRI techniques, such as DWI-MR (diffusion weighted imaging MR), DCE-MR (dynamic contrast enhanced MR), MRS (MR spectroscopy) and MR for attenuation correction of PET. All MR techniques presented in this paper have shown promising results in the treatment of patients with solid tumors and could be applied together with PET increasing the amount of information about the tissues of interest. The potential clinical benefit of applying PET/MR in staging, radiotherapy planning and treatment evaluation in oncology, as well as the research perspectives for the use of PET/MR in the development of new tracers and drugs will be discussed.

18.
Nucl Med Commun ; 33(7): 708-18, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22513883

ABSTRACT

OBJECTIVE: One of the main problems in quantification of single photon emission computer tomography imaging is scatter. In iodine-123 (I-123) imaging, both the primary 159 keV photons and photons of higher energies are scattered. In this experimental study, different scatter correction methods, based on energy window subtraction, have been compared with each other. METHODS AND MATERIALS: Iodine-123 single photon emission computed tomography images of a phantom with a known intensity ratio between background and hollow spheres were acquired for three different collimators (low energy high resolution, low energy general purpose, and medium energy general purpose). The hollow spheres were filled with a higher activity concentration than the uniform background activity concentration, resulting in hot spots. Counts were collected in different energy windows, and scatter correction was performed by applying different methods such as effective scatter source estimation, triple and dual energy window (TEW and DEW), double peak window (DPW) and downscatter correction. The intensity ratio between the spheres and the background was used to compare the performance of the different methods. RESULTS: The results revealed that the efficiency of the scatter correction techniques vary depending on the collimator used. For the low energy high resolution collimator, all correction methods except the effective scatter source estimation and the DPW perform well. For the medium energy general purpose collimator, even without scatter correction, the calculated ratio is close to the real ratio. The DEW and DPW methods tend to overestimate the ratio. For the low energy general purpose collimator, only the DEW and the combined DEW and downscatter correction methods perform well. CONCLUSION: The only correction method that provides a ratio that differs by less than 5% from the real ratio for all the collimators is the combined DEW and downscatter correction method.


Subject(s)
Image Processing, Computer-Assisted/methods , Scattering, Radiation , Tomography, Emission-Computed, Single-Photon/methods , Algorithms , Humans , Iodine Radioisotopes , Phantoms, Imaging , Reproducibility of Results
19.
Eur J Nucl Med Mol Imaging ; 39(1): 188-97, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22089660

ABSTRACT

PURPOSE: Multi-centre trials are an important part of proving the efficacy of procedures, drugs and interventions. Imaging components in such trials are becoming increasingly common; however, without sufficient control measures the usefulness of these data can be compromised. This paper describes a framework for performing high-quality multi-centre trials with single photon emission computed tomography (SPECT), using a pan-European initiative to acquire a normal control dopamine transporter brain scan database as an example. METHODS: A framework to produce high-quality and consistent SPECT imaging data was based on three key areas: quality assurance, the imaging protocol and system characterisation. Quality assurance was important to ensure that the quality of the equipment and local techniques was good and consistently high; system characterisation helped understand and where possible match the performance of the systems involved, whereas the imaging protocol was designed to allow a degree of flexibility to best match the characteristics of each imaging device. RESULTS: A total of 24 cameras on 15 sites from 8 different manufacturers were evaluated for inclusion in our multi-centre initiative. All results matched the required level of specification and each had their performance characterised. Differences in performance were found between different system types and cameras of the same type. Imaging protocols for each site were modified to match their individual characteristics to produce comparable high-quality SPECT images. CONCLUSION: A framework has been designed to produce high-quality data for multi-centre SPECT studies. This framework has been successfully applied to a pan-European initiative to acquire a healthy control dopamine transporter image database.


Subject(s)
Clinical Trials as Topic/standards , Databases, Factual , Multicenter Studies as Topic/standards , Nuclear Medicine , Tomography, Emission-Computed, Single-Photon , Tropanes , Europe , Humans , Quality Control , Reference Standards
20.
J Nucl Med Technol ; 39(4): 271-8, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22072699

ABSTRACT

UNLABELLED: In nuclear medicine brain imaging, it is important to delineate regions of interest (ROIs) so that the outcome is both accurate and reproducible. The purpose of this study was to validate a new time-saving algorithm (DATquan) for accurate and reproducible quantification of the striatal dopamine transporter (DAT) with appropriate radioligands and SPECT and without the need for structural brain scanning. METHODS: In a reconstructed DAT SPECT image, DATquan automatically calculated the ratio at steady state of specifically bound radioligand to nondisplaceable radioligand in tissue (BP(ND)) within striatal ROIs that were delineated by use of a semiautomatic template-based alignment approach. DATquan was tested with (123)I-N-(3-iodoprop-2E-enyl)-2-ß-carbomethoxy-3ß-(4-methylphenyl) SPECT images from 15 patients. In each image, ROIs were first manually delineated, and then corresponding BP(ND) values were derived by an experienced physician. Afterward, 2 independent novice operators used DATquan to analyze the same 15 images. The resulting DATquan-derived BP(ND) data were compared with the data retrieved by manual delineation to assess the accuracy and reproducibility of DATquan. Also, the operational aspects of DATquan were assessed on the basis of measurements of the mean running time of the algorithm as well as on the basis of quantification of the overlap of the DATquan-delineated ROIs obtained by the 2 operators. RESULTS: The mean algorithm running time was 3 min, and the operators' striatal ROIs had a mean overlap of more than 82%. DATquan-derived BP(ND) values obtained by the 2 operators showed high agreement (the mean difference was 0.00 [SD, 0.05] in the striatum, 0.02 [SD, 0.26] in the putamen, and 0.03 [SD, 0.43] in the caudate nucleus). The interoperator variability was 2.2% (SD, 1.3%) in the striatum, 11.7% (SD, 9.9%) in the putamen, and 12.9% (SD, 4.0%) in the caudate nucleus. DATquan-derived BP(ND) values showed high agreement with the values manually derived by the experienced delineator. CONCLUSION: DATquan is a freely available, accurate, and highly reproducible method for quantification of DAT binding in the brain by SPECT. Once implemented in clinics, DATquan will serve as a useful and time-saving tool.


Subject(s)
Algorithms , Brain/diagnostic imaging , Brain/metabolism , Dopamine Plasma Membrane Transport Proteins/metabolism , Nortropanes/pharmacokinetics , Tomography, Emission-Computed, Single-Photon/methods , Aged , Aged, 80 and over , Computer Simulation , Female , Humans , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Middle Aged , Models, Neurological , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...