Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Antibiotics (Basel) ; 12(4)2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37107119

ABSTRACT

Resistant bacteria may kill more people than COVID-19, so the development of new antibacterials is essential, especially against microbial biofilms that are reservoirs of resistant cells. Silver nanoparticles (bioAgNP), biogenically synthesized using Fusarium oxysporum, combined with oregano derivatives, present a strategic antibacterial mechanism and prevent the emergence of resistance against planktonic microorganisms. Antibiofilm activity of four binary combinations was tested against enteroaggregative Escherichia coli (EAEC) and Klebsiella pneumoniae carbapenemase-producing K. pneumoniae (KPC): oregano essential oil (OEO) plus bioAgNP, carvacrol (Car) plus bioAgNP, thymol (Thy) plus bioAgNP, and Car plus Thy. The antibiofilm effect was accessed using crystal violet, MTT, scanning electron microscopy, and Chromobacterium violaceum anti-quorum-sensing assays. All binary combinations acted against preformed biofilm and prevented its formation; they showed improved antibiofilm activity compared to antimicrobials individually by reducing sessile minimal inhibitory concentration up to 87.5% or further decreasing biofilm metabolic activity and total biomass. Thy plus bioAgNP extensively inhibited the growth of biofilm in polystyrene and glass surfaces, disrupted three-dimensional biofilm structure, and quorum-sensing inhibition may be involved in its antibiofilm activity. For the first time, it is shown that bioAgNP combined with oregano has antibiofilm effect against bacteria for which antimicrobials are urgently needed, such as KPC.

2.
Front Microbiol ; 13: 842600, 2022.
Article in English | MEDLINE | ID: mdl-35602016

ABSTRACT

Multidrug-resistant bacteria have become a public health problem worldwide, reducing treatment options against several pathogens. If we do not act against this problem, it is estimated that by 2050 superbugs will kill more people than the current COVID-19 pandemic. Among solutions to combat antibacterial resistance, there is increasing demand for new antimicrobials. The antibacterial activity of binary combinations containing bioAgNP (biogenically synthesized silver nanoparticles using Fusarium oxysporum), oregano essential oil (OEO), carvacrol (Car), and thymol (Thy) was evaluated: OEO plus bioAgNP, Car plus bioAgNP, Thy plus bioAgNP, and Car plus Thy. This study shows that the mechanism of action of Thy, bioAgNP, and Thy plus bioAgNP involves damaging the membrane and cell wall (surface blebbing and disruption seen with an electron microscope), causing cytoplasmic molecule leakage (ATP, DNA, RNA, and total proteins) and oxidative stress by enhancing intracellular reactive oxygen species and lipid peroxidation; a similar mechanism happens for OEO and Car, except for oxidative stress. The combination containing bioAgNP and oregano derivatives, especially thymol, shows strategic antibacterial mechanism; thymol disturbs the selective permeability of the cell membrane and consequently facilitates access of the nanoparticles to bacterial cytoplasm. BioAgNP-treated Escherichia coli developed resistance to nanosilver after 12 days of daily exposition. The combination of Thy and bioAgNP prevented the emergence of resistance to both antimicrobials; therefore, mixture of antimicrobials is a strategy to extend their life. For antimicrobials alone, minimal bactericidal concentration ranges were 0.3-2.38 mg/ml (OEO), 0.31-1.22 mg/ml (Car), 0.25-1 mg/ml (Thy), and 15.75-31.5 µg/ml (bioAgNP). The time-kill assays showed that the oregano derivatives acted very fast (at least 10 s), while the bioAgNP took at least 30 min to kill Gram-negative bacteria and 7 h to kill methicillin-resistant Staphylococcus aureus (MRSA). All the combinations resulted in additive antibacterial effect, reducing significantly minimal inhibitory concentration and acting faster than the bioAgNP alone; they also showed no cytotoxicity. This study describes for the first time the effect of Car and Thy combined with bioAgNP (produced with F. oxysporum components) against bacteria for which efficient antimicrobials are urgently needed, such as carbapenem-resistant strains (E. coli, Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa) and MRSA.

3.
Future Microbiol ; 15: 1001-1013, 2020 07.
Article in English | MEDLINE | ID: mdl-32811174

ABSTRACT

Aim: To compare the pathogenesis of vulvovaginal candidiasis by three Candida species in diabetic mice. Materials & methods: Estrogenized and diabetic mice were challenged with C. albicans, C. tropicalis and C. glabrata. Results: Diabetic animals infected with C. albicans and C. tropicalis maintained the highest fungal burden, despite of high levels of proinflammatory cytokines (IL-6 and TNF-α), respectively. For C. glabrata, the results were similar in diabetic and nondiabetic groups. Conclusion:C. tropicalis was as invasive as C. albicans, and both were more effective than C. glabrata. This ability was attributed to filamentation, which may be stimulated by glucose levels from vaginal fluid. In addition, the high burden may be attributed to the apparent immunological inefficiency of the diabetic host.


Subject(s)
Candida albicans/physiology , Candida glabrata/physiology , Candida tropicalis/physiology , Candidiasis, Vulvovaginal/microbiology , Diabetes Complications/microbiology , Animals , Candida albicans/genetics , Candida albicans/isolation & purification , Candida glabrata/genetics , Candida glabrata/isolation & purification , Candida tropicalis/genetics , Candida tropicalis/isolation & purification , Candidiasis, Vulvovaginal/etiology , Candidiasis, Vulvovaginal/genetics , Candidiasis, Vulvovaginal/metabolism , Diabetes Complications/etiology , Diabetes Complications/genetics , Diabetes Complications/metabolism , Disease Models, Animal , Female , Humans , Interleukin-6/genetics , Interleukin-6/metabolism , Mice , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
4.
Biomolecules ; 9(10)2019 10 08.
Article in English | MEDLINE | ID: mdl-31597236

ABSTRACT

Potassium bicarbonate (PB), calcium chelate (CCh), and sodium silicate (SSi) have been extensively used as antifungal generally recognized as safe (GRAS) compounds against plant pathogenic fungi. In this research, in in vitro tests, the radial growth, conidial germination, and germ tube elongation of Botrytis cinerea was completely inhibited at 0.3% of PB, SSi, and CCh. In in vivo tests, application of PB, SSi, and CCh completely inhibited the occurrence of gray mold incidence of inoculated 'Italia' grape berries at concentrations of 1.0, 0.8, and 0.8%, respectively. In order to investigate the detailed mechanisms by which salts exhibited antifungal activity, we analyzed their influence on morphological changes by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) and also on reactive species of oxygen (ROS), mitochondrial membrane potential (MMP), and adenosine triphosphate (ATP) content. Defects such as malformation and excessive septation were detected on salt-treated hyphae morphology observed by SEM. The internal structure of conidia treated or not with salt solutions was examined by TEM. In treated conidia, most of the conidia were affected and cellular vacuolization and cytoplasmic disorganization was observed. For ROS accumulation, a higher increase was observed in fluorescent conidia in presence of PB, SSi, and CCh by 75, 68, and 70% as compared to control, respectively. MMP was significantly decreased after salt application indicating a loss of mitochondria function. Also, luminescence showed that B. cinerea-conidia treated with salts contained less ATP than the untreated conidia. The results obtained herein are a step towards a comprehensive understanding of the mode of action by which salts act as antifungal agents against B. cinerea.


Subject(s)
Antifungal Agents/pharmacology , Botrytis/physiology , Botrytis/ultrastructure , Salts/pharmacology , Adenosine Triphosphate/metabolism , Bicarbonates/pharmacology , Botrytis/drug effects , Calcium Chelating Agents/pharmacology , Hyphae/drug effects , Hyphae/physiology , Hyphae/ultrastructure , Membrane Potential, Mitochondrial/drug effects , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Plant Diseases/microbiology , Plant Diseases/prevention & control , Potassium Compounds/pharmacology , Reactive Oxygen Species/metabolism , Silicates/pharmacology , Spores, Fungal/drug effects , Spores, Fungal/physiology , Spores, Fungal/ultrastructure
5.
Int J Biol Macromol ; 141: 247-258, 2019 Dec 01.
Article in English | MEDLINE | ID: mdl-31476398

ABSTRACT

Ecofriendly nanostructured materials have been proposed as promising alternative control means to prevent plant diseases. Chitosan nanoparticles (CN), silica nanoparticles (SN) and chitosan-silica nanocomposites (CSN) were synthesized and their morphology and structure was characterized by transmission electron microscope (TEM), scanning electron microscopy (SEM), infrared spectra (FT-IR) and Raman spectroscopy. Their antifungal efficiency against Botrytis cinerea, the causal fungus of gray mold disease of table grapes, was tested in vitro and in vivo (under artificial and natural infections). In vitro tests showed that CN, SN and CSN reduced fungal growth by 72, 76 and 100%, respectively at 1% as compared to control. Under natural infection, at the end of cold storage, CSN was the most effective treatment, and reduced the development of gray mold by 59 and 83%, for 'Italia' and 'Benitaka' grapes, respectively as compared to the water control. Results indicate that a synergistic effect of CSN against gray mold was observed. The impact of tested nanocomposites on soluble solids - TSS, titratable acidity - TA, TSS/TA, berry color, mass loss, stem browning and shattered berries was investigated. No negative effect of tested nanomaterials in term of grape quality was observed. For 'Italia' table grape, CN and CSN can preserve bunches from mass loss as compared to control. Also, the effect of CSN on reactive species of oxygen (ROS), ATP content and mitochondrial membrane potential (MMP) of B. cinerea spores was determined to verify its mode of action. The obtained results suggested CSN, as alternative control means, to reduce/substitute the use of fungicides to control gray mold of table grapes while maintaining grape quality.


Subject(s)
Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Chitosan , Nanocomposites , Plant Diseases/microbiology , Silicon Dioxide , Vitis/microbiology , Adenosine Triphosphate/metabolism , Chitosan/chemistry , Food Microbiology , Food Quality , Fungi/drug effects , Fungi/isolation & purification , Fungi/metabolism , Microbial Sensitivity Tests , Nanocomposites/chemistry , Nanocomposites/ultrastructure , Reactive Oxygen Species/metabolism , Silicon Dioxide/chemistry , Spectrum Analysis
6.
Front Microbiol ; 8: 2155, 2017.
Article in English | MEDLINE | ID: mdl-29163438

ABSTRACT

The Leptospira serovar Hedjo belongs to the serogroup sejroe and this serovar is the most prevalent in bovine herds worldwide. The sejroe serogroup is the most frequently detected by serology in Brazilian cattle herds suggesting that it is due serovar Hardjo. In the molecular classification, this serovar has two genotypes: Hardjobovis and Hardjoprajitno. This serovar is as considered as fastidious pathogens, and their isolation is one of the bottlenecks in leptospirosis laboratories. In addition, its molecular characterization using genomic approaches is oftentimes not simple and time-consuming. This study describes a method for isolating the two genotypes of serovar Hardjo using culture medium formulations and suggests a get-at-able molecular characterization. Ten cows naturally infected which were seropositive were selected from small dairy farms, and their urine was collected for bacterial isolation. We evaluated three modifications of liquid Leptospira medium culture supplemented with sodium pyruvate, superoxide dismutase enzyme and fetal bovine serum, and the isolates were characterized by molecular techniques. After isolation and adaptation in standard culture medium, the strains were subcultured for 1 week in the three modified culture media for morphologic evaluation using electronic microscopy. Strains were molecularly identified by multilocus variable-number tandem-repeat analysis (MLVA), partial sequencing and phylogenic analyses of gene sec Y. Combining the liquid culture medium formulations allowed growth of the Leptospira serovar Hardjo in three tubes. Two isolates were identified as genotype Hardjobovis, and the other as genotype Hardjoprajitno. Morphologically, compared with control media, cells in the medium supplemented with the superoxide dismutase enzyme were more elongated and showed many cells in division. The cells in the medium supplemented with fetal bovine serum were fewer and lost their spirochete morphology. This indicated that the additional supplementation with fetal bovine serum assisted in the initial growth and maintenance of the viable leptospires and the superoxide dismutase enzyme allowed them to adapt to the medium. These culture strategies allowed for the isolation and convenient molecular characterization of two genotypes of serovar Hardjo, creating new insight into the seroepidemiology of leptospirosis and its specific genotypes. It also provides new information for the immunoprophylaxis of bovine leptospirosis.

7.
Sci Rep ; 7(1): 16555, 2017 11 29.
Article in English | MEDLINE | ID: mdl-29185462

ABSTRACT

Epidemic Transient Neonatal Losses (ETNL) is a disease of piglets caused by Senecavirus A (SVA) in which the method of dissemination and associated lesions are not well-defined. This study investigated the possible SVA-induced lesions by examining spontaneous infections in newborn piglets. Histopathology revealed ballooning degeneration of transitional epithelium, nonsuppurative meningoencephalitis, plexus choroiditis, and atrophic enteritis. RT-PCR identified SVA in all tissues evaluated and sequencing confirmed these results. Positive immunoreactivity to SVA was observed in endothelial and epithelial tissues of all organs evaluated. Semithin analysis revealed vacuolization of apical enterocytes of the small intestine, balloon degeneration and necrosis of endothelial cells of the choroid plexus (CP) and nonsuppurative choroid plexitis. Ultrathin evaluation demonstrated hydropic degeneration of apical enterocytes, degeneration and necrosis of endothelium of CP fenestrated capillaries, degeneration of ependymocytes associated with intralesional viral particles. It is proposed that SVA initially infects apical enterocytes of newborn piglets and probably enters the circulatory system with entry to the brain via the CP, by first producing an initial inflammatory reaction, with subsequent encephalitic dissemination. Consequently, SVA probably uses an enteric-neurological method of dissemination.


Subject(s)
Choroid Plexus/pathology , Choroid Plexus/virology , Picornaviridae/pathogenicity , Animals , Animals, Newborn , Choroid Plexus/metabolism , Inflammation/metabolism , Inflammation/pathology , Inflammation/virology , Picornaviridae/immunology , Picornaviridae Infections/metabolism , Picornaviridae Infections/pathology , Picornaviridae Infections/virology , Swine , Swine Diseases
8.
Front Chem ; 5: 66, 2017.
Article in English | MEDLINE | ID: mdl-28966922

ABSTRACT

The bacterial resistance for antibiotics is one of the most important problems in public health and only a small number of new products are in development. Antagonistic microorganisms from soil are a promising source of new candidate molecules. Products of secondary metabolism confer adaptive advantages for their producer, in the competition for nutrients in the microbial community. The biosynthesis process of compounds with antibiotic activity is the key to optimize their production and the transcriptomic study of microorganisms is of great benefit for the discovery of these metabolic pathways. Pseudomonas aeruginosa LV strain growing in the presence of copper chloride produces a bioactive organometallic compound, which has a potent antimicrobial activity against various microorganisms. The objective of this study was to verify overexpressed genes and evaluate their relation to the organometallic biosynthesis in this microorganism. P. aeruginosa LV strain was cultured in presence and absence of copper chloride. Two methods were used for transcriptomic analysis, genome reference-guided assembly and de novo assembly. The genome referenced analysis identified nine upregulated genes when bacteria were exposed to copper chloride, while the De Novo Assembly identified 12 upregulated genes. Nineteen genes can be related to an increased microbial metabolism for the extrusion process of exceeding intracellular copper. Two important genes are related to the biosynthesis of phenazine and tetrapyrroles compounds, which can be involved in the bioremediation of intracellular copper and we suggesting that may involve in the biosynthesis of the organometallic compound. Additional studies are being carried out to further prove the function of the described genes and relate them to the biosynthetic pathway of the organometallic compound.

9.
Front Microbiol ; 8: 1102, 2017.
Article in English | MEDLINE | ID: mdl-28659907

ABSTRACT

One of the most important postharvest plant pathogens that affect strawberries, grapes and tomatoes is Botrytis cinerea, known as gray mold. The fungus remains in latent form until spore germination conditions are good, making infection control difficult, causing great losses in the whole production chain. This study aimed to purify and identify phenazine-1-carboxylic acid (PCA) produced by the Pseudomonas aeruginosa LV strain and to determine its antifungal activity against B. cinerea. The compounds produced were extracted with dichloromethane and passed through a chromatographic process. The purity level of PCA was determined by reversed-phase high-performance liquid chromatography semi-preparative. The structure of PCA was confirmed by nuclear magnetic resonance and electrospray ionization mass spectrometry. Antifungal activity was determined by the dry paper disk and minimum inhibitory concentration (MIC) methods and identified by scanning electron microscopy and confocal microscopy. The results showed that PCA inhibited mycelial growth, where MIC was 25 µg mL-1. Microscopic analysis revealed a reduction in exopolysaccharide (EPS) formation, showing distorted and damaged hyphae of B. cinerea. The results suggested that PCA has a high potential in the control of B. cinerea and inhibition of EPS (important virulence factor). This natural compound is a potential alternative to postharvest control of gray mold disease.

10.
Curr Pharm Biotechnol ; 18(2): 177-190, 2017.
Article in English | MEDLINE | ID: mdl-27978809

ABSTRACT

BACKGROUND: Streptococcus agalactiae (group B Streptococcus - GBS) remains a leading cause of neonatal infections and an important cause of invasive infections in adults with underlying conditions. METHODS: This study evaluated for the first time the effect of an oleoresin collected from Copaifera multijuga Hayne (copaiba oil) alone or in combination with silver nanoparticles produced by green synthesis using Fusarium oxysporum (AgNPbio) against planktonic and sessile cells of GBS isolated from colonized women. RESULTS: Copaiba oil showed a dose-dependent bactericidal activity against planktonic GBS strains, including those resistant to erythromycin and/or clindamycin. Scanning and transmission electron microscopy of GBS treated with copaiba oil revealed morphological and ultrastructural alterations, displaying disruption of the cell wall and decreased electron density due to leakage of cytoplasmic content. Copaiba oil also exhibited antibacterial activity against biofilms of GBS strains, inhibiting their formation as well as the viability of mature biofilms. In addition, the combination of copaiba oil with AgNPbio resulted in a synergistic effect against planktonic cells and biofilm formation, reducing the minimal inhibitory concentration values of both compounds. No hemolytic activity was detected for both compounds. CONCLUSION: These results indicate the potential of copaiba oil, alone or in combination with AgNPbio, for the development of new alternative strategies for controlling GBS infections.


Subject(s)
Anti-Bacterial Agents/pharmacology , Fabaceae/chemistry , Metal Nanoparticles , Plant Extracts/pharmacology , Silver/pharmacology , Streptococcus agalactiae/drug effects , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/toxicity , Biofilms/drug effects , Cell Line , Cell Survival/drug effects , Drug Synergism , Female , Humans , Hydrogels/isolation & purification , Hydrogels/pharmacology , Metal Nanoparticles/chemistry , Microbial Sensitivity Tests , Plant Extracts/isolation & purification , Plant Extracts/toxicity , Rectum/microbiology , Silver/isolation & purification , Silver/toxicity , Silver Compounds/isolation & purification , Silver Compounds/pharmacology , Streptococcus agalactiae/isolation & purification , Vagina/microbiology
11.
Front Plant Sci ; 7: 1708, 2016.
Article in English | MEDLINE | ID: mdl-27920781

ABSTRACT

Schizolobium parahyba var. amazonicum (Huber ex Ducke) occurs naturally in the Brazilian Amazon. Currently, it is being planted extensively because of its fast growth and excellent use in forestry. Consequently, there is great interest in new strategies to increase wood production. The interaction between soil microorganisms and plants, specifically in the roots, provides essential nutrients for plant growth. These interactions can have growth-promoting effects. In this way, this study assessed the effect of the inoculation with arbuscular mycorrhizal fungi (AMF) and plant growth-promoting rhizobacteria (PGPR) on growth of S. parahyba var. amazonicum under field conditions. We used two native species of arbuscular mycorrhizal fungi, Claroideoglomus etunicatum (Ce), and Acaulospora sp. (Ac); two native strains of Rhizobium sp. (Rh1 and Rh2); and a non-native strain of Burkholderia sp. Different combinations of microorganisms were supplemented with chemical fertilizers (doses D1 and D2) in two planting methods, seed sowing and seedling planting. In seed sowing, the results showed that treatments with Ce/Rh1/Fertilizer D2 and Ac/No PGPR/Fertilizer D2 increased wood yield. In seedling planting, two combinations (Ac/Rh2/Fertilizer D1 and Ac/Rh1/Fertilizer D1) were more effective in increasing seedling growth. In these experiments, inoculation with AMF and PGPR increased wood yield by about 20% compared to the application of fertilizer alone.

12.
Front Microbiol ; 7: 720, 2016.
Article in English | MEDLINE | ID: mdl-27303367

ABSTRACT

Nutrient availability is an important factor in crop production, and regular addition of chemical fertilizers is the most common practice to improve yield in agrosystems for intensive crop production. The use of some groups of microorganisms that have specific activity providing nutrients to plants is a good alternative, and arbuscular mycorrhizal fungi (AMF) enhance plant nutrition by providing especially phosphorus, improving plant growth and increasing crop production. Unfortunately, the use of AMF as an inoculant on a large scale is not yet widely used, because of several limitations in obtaining a large amount of inoculum due to several factors, such as low growth, the few species of AMF domesticated under in vitro conditions, and high competition with native AMF. The objective of this work was to test the infectivity of a Rhizophagus clarus inoculum and its effectiveness as an alternative for nutrient supply in soybean (Glycine max L.) and cotton (Gossypium hirsutum L.) when compared with conventional chemical fertilization under field conditions. The experiments were carried out in a completely randomized block design with five treatments: Fertilizer, AMF, AMF with Fertilizer, AMF with 1/2 Fertilizer, and the Control with non-inoculated and non-fertilized plants. The parameters evaluated were AMF root colonization and effect of inoculation on plant growth, nutrient absorption and yield. The results showed that AMF inoculation increased around 20 % of root colonization in both soybean and cotton; nutrients analyses in vegetal tissues showed increase of P and nitrogen content in inoculated plants, these results reflect in a higher yield. Our results showed that, AMF inoculation increase the effectiveness of fertilizer application in soybean and reduce the fertilizer dosage in cotton.

13.
Front Microbiol ; 7: 760, 2016.
Article in English | MEDLINE | ID: mdl-27242772

ABSTRACT

Bacterial resistance to conventional antibiotics has become a clinical and public health problem, making therapeutic decisions more challenging. Plant compounds and nanodrugs have been proposed as potential antimicrobial alternatives. Studies have shown that oregano (Origanum vulgare) essential oil (OEO) and silver nanoparticles have potent antibacterial activity, also against multidrug-resistant strains; however, the strong organoleptic characteristics of OEO and the development of resistance to these metal nanoparticles can limit their use. This study evaluated the antibacterial effect of a two-drug combination of biologically synthesized silver nanoparticles (bio-AgNP), produced by Fusarium oxysporum, and OEO against Gram-positive and Gram-negative bacteria, including multidrug-resistant strains. OEO and bio-AgNP showed bactericidal effects against all 17 strains tested, with minimal inhibitory concentrations (MIC) ranging from 0.298 to 1.193 mg/mL and 62.5 to 250 µM, respectively. Time-kill curves indicated that OEO acted rapidly (within 10 min), while the metallic nanoparticles took 4 h to kill Gram-negative bacteria and 24 h to kill Gram-positive bacteria. The combination of the two compounds resulted in a synergistic or additive effect, reducing their MIC values and reducing the time of action compared to bio-AgNP used alone, i.e., 20 min for Gram-negative bacteria and 7 h for Gram-positive bacteria. Scanning electron microscopy (SEM) revealed similar morphological alterations in Staphylococcus aureus (non-methicillin-resistant S. aureus, non-MRSA) cells exposed to three different treatments (OEO, bio-AgNP and combination of the two), which appeared cell surface blebbing. Individual and combined treatments showed reduction in cell density and decrease in exopolysaccharide matrix compared to untreated bacterial cells. It indicated that this composition have an antimicrobial activity against S. aureus by disrupting cells. Both compounds showed very low hemolytic activity, especially at MIC levels. This study describes for the first time the synergistic and additive interaction between OEO and bio-AgNP produced by F. oxysporum against multidrug-resistant bacteria, such as MRSA, and ß-lactamase- and carbapenemase-producing Escherichia coli and Acinetobacter baumannii strains. These results indicated that this combination can be an alternative in the control of infections with few or no treatment options.

14.
Front Microbiol ; 7: 113, 2016.
Article in English | MEDLINE | ID: mdl-26903992

ABSTRACT

Citrus canker is a very destructive disease of citrus species. The challenge is to find new compounds that show strong antibiotic activity and low toxicity to plants and the environment. The objectives of the present study were (1) to extract, purify and evaluate the secondary metabolites with antibiotic activity produced by Pseudomonas aeruginosa LV strain in vitro against Xanthomonas citri subsp. citri (strain 306), (2) to determine the potential of semi-purified secondary metabolites in foliar application to control citrus canker under greenhouse conditions, and (3) to identify antibiotic activity in orange leaf mesophyll infected with strain 306, by electron microscopy. Two pure bioactive compounds were isolated, an organocopper antibiotic compound (OAC) and phenazine-1-carboxamide. Phenazine-1-carboxamide did not show any antibiotic activity under the experimental conditions used in this study. The OAC showed a high level of antibiotic activity with a minimum inhibitory concentration of 0.12 µg mL(-1). In greenhouse tests for control of citrus canker in orange trees, the semi-purified fraction F3d reduced lesion formation by about 97%. The concentration used was 500 times lower than that for the recommended commercial copper-based product. Electron microscopy showed that F3d altered the exopolysaccharide matrix and caused cell lysis of the pathogen inside the citrus canker lesions. These results suggest that secondary metabolites produced by inducing P. aeruginosa LV strain have a high potential to be used as a bioproduct to control citrus canker.

15.
Curr Pharm Biotechnol ; 17(4): 389-97, 2016.
Article in English | MEDLINE | ID: mdl-26891742

ABSTRACT

Multidrug-resistant organisms (MDRO) are a great problem in hospitals, where thousands of people are infected daily, with the occurrence of high mortality rates, especially in infections caused by Klebsiella pneumoniae carbapenemase-producing K. pneumoniae (KPC-producing Kpn). The challenge is to find new compounds that can control KPC producing-Kpn infections. The aim of this study was to evaluate the antibiotic activity of the F3d fraction produced by the Pseudomonas aeruginosa LV strain against clinical isolates of KPC-producing Kpn. The results showed that the minimum inhibitory concentration of F3d (62.5 µg mL(-1)), containing an organic metallic compound, killed planktonic cells of KPC-producing Kpn strains after 30 min of incubation. At the same concentration, this fraction also showed an inhibitory effect against biofilm of these bacteria after 24 h of incubation. Treatment with the F3d fraction caused pronounced morphological alterations in both planktonic and biofilm cells of the bacteria. The inhibitory effect of the F3d fraction seems to be more selective for the bacteria than the host cells, indicating its potential in the development of new drugs for the treatment of infections caused by KPC-producing Kpn and other MDRO.


Subject(s)
Anti-Bacterial Agents/biosynthesis , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/metabolism , Klebsiella pneumoniae/drug effects , Pseudomonas aeruginosa/metabolism , beta-Lactamases/metabolism , Biofilms/drug effects , Pseudomonas aeruginosa/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...