Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
J Mol Med (Berl) ; 102(2): 183-195, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38010437

ABSTRACT

As SARS-CoV-2 continues to produce new variants, the demand for diagnostics and a better understanding of COVID-19 remain key topics in healthcare. Skin manifestations have been widely reported in cases of COVID-19, but the mechanisms and markers of these symptoms are poorly described. In this cross-sectional study, 101 patients (64 COVID-19 positive patients and 37 controls) were enrolled between April and June 2020, during the first wave of COVID-19, in São Paulo, Brazil. Enrolled patients had skin imprints sampled non-invasively using silica plates; plasma samples were also collected. Samples were used for untargeted lipidomics/metabolomics through high-resolution mass spectrometry. We identified 558 molecular ions, with lipids comprising most of them. We found 245 plasma ions that were significant for COVID-19 diagnosis, compared to 61 from the skin imprints. Plasma samples outperformed skin imprints in distinguishing patients with COVID-19 from controls, with F1-scores of 91.9% and 84.3%, respectively. Skin imprints were excellent for assessing disease severity, exhibiting an F1-score of 93.5% when discriminating between patient hospitalization and home care statuses. Specifically, oleamide and linoleamide were the most discriminative biomarkers for identifying hospitalized patients through skin imprinting, and palmitic amides and N-acylethanolamine 18:0 were also identified as significant biomarkers. These observations underscore the importance of primary fatty acid amides and N-acylethanolamines in immunomodulatory processes and metabolic disorders. These findings confirm the potential utility of skin imprinting as a valuable non-invasive sampling method for COVID-19 screening; a method that may also be applied in the evaluation of other medical conditions. KEY MESSAGES: Skin imprints complement plasma in disease metabolomics. The annotated markers have a role in immunomodulation and metabolic diseases. Skin imprints outperformed plasma samples at assessing disease severity. Skin imprints have potential as non-invasive sampling strategy for COVID-19.


Subject(s)
COVID-19 , Metabolic Diseases , Humans , COVID-19/diagnosis , SARS-CoV-2 , COVID-19 Testing , Cross-Sectional Studies , Brazil , Metabolome , Metabolomics/methods , Biomarkers , Amides , Ions
2.
Food Chem ; 398: 133870, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-35963216

ABSTRACT

Food safety and quality assessment mechanisms are unmet needs that industries and countries have been continuously facing in recent years. Our study aimed at developing a platform using Machine Learning algorithms to analyze Mass Spectrometry data for classification of tomatoes on organic and non-organic. Tomato samples were analyzed using silica gel plates and direct-infusion electrospray-ionization mass spectrometry technique. Decision Tree algorithm was tailored for data analysis. This model achieved 92% accuracy, 94% sensitivity and 90% precision in determining to which group each fruit belonged. Potential biomarkers evidenced differences in treatment and production for each group.


Subject(s)
Solanum lycopersicum , Algorithms , Food Safety , Solanum lycopersicum/chemistry , Machine Learning , Spectrometry, Mass, Electrospray Ionization
3.
Sci Rep ; 12(1): 20531, 2022 11 29.
Article in English | MEDLINE | ID: mdl-36446837

ABSTRACT

Infertility is a worldwide concern, affecting one in six couples throughout their reproductive period. Therefore, enhancing the clinical tools available to identify the causes of infertility may save time, money, and emotional distress for the involved parties. This study aims to annotate potential biomarkers in follicular fluid that are negatively affecting pregnancy outcomes in women suffering infertility-related diseases such as endometriosis, tuboperitoneal factor, uterine factor, and unexplained infertility, using a metabolomics approach through high-resolution mass spectrometry. Follicular fluid samples collected from women who have the abovementioned diseases and managed to become pregnant after in vitro fertilization procedures [control group (CT)] were metabolically compared with those from women who suffer from the same diseases and could not get pregnant after the same treatment [infertile group (IF)]. Mass spectrometry analysis indicated 10 statistically relevant differential metabolites in the IF group, including phosphatidic acids, phosphatidylethanolamines, phosphatidylcholines, phosphatidylinositol, glucosylceramides, and 1-hydroxyvitamin D3 3-D-glucopyranoside. These metabolites are associated with cell signaling, cell proliferation, inflammation, oncogenesis, and apoptosis, and linked to infertility problems. Our results indicate that understanding the IF's metabolic profile may result in a faster and more assertive female infertility diagnosis, lowering the costs, and increasing the probability of a positive pregnancy outcome.


Subject(s)
Follicular Fluid , Infertility, Female , Female , Humans , Pregnancy , Fertilization in Vitro , Metabolomics , Biomarkers , Infertility, Female/therapy
4.
Front Microbiol ; 13: 844283, 2022.
Article in English | MEDLINE | ID: mdl-35572676

ABSTRACT

The severity, disabilities, and lethality caused by the coronavirus 2019 (COVID-19) disease have dumbfounded the entire world on an unprecedented scale. The multifactorial aspect of the infection has generated interest in understanding the clinical history of COVID-19, particularly the classification of severity and early prediction on prognosis. Metabolomics is a powerful tool for identifying metabolite signatures when profiling parasitic, metabolic, and microbial diseases. This study undertook a metabolomic approach to identify potential metabolic signatures to discriminate severe COVID-19 from non-severe COVID-19. The secondary aim was to determine whether the clinical and laboratory data from the severe and non-severe COVID-19 patients were compatible with the metabolomic findings. Metabolomic analysis of samples revealed that 43 metabolites from 9 classes indicated COVID-19 severity: 29 metabolites for non-severe and 14 metabolites for severe disease. The metabolites from porphyrin and purine pathways were significantly elevated in the severe disease group, suggesting that they could be potential prognostic biomarkers. Elevated levels of the cholesteryl ester CE (18:3) in non-severe patients matched the significantly different blood cholesterol components (total cholesterol and HDL, both p < 0.001) that were detected. Pathway analysis identified 8 metabolomic pathways associated with the 43 discriminating metabolites. Metabolomic pathway analysis revealed that COVID-19 affected glycerophospholipid and porphyrin metabolism but significantly affected the glycerophospholipid and linoleic acid metabolism pathways (p = 0.025 and p = 0.035, respectively). Our results indicate that these metabolomics-based markers could have prognostic and diagnostic potential when managing and understanding the evolution of COVID-19.

5.
Med Oncol ; 38(9): 100, 2021 Jul 24.
Article in English | MEDLINE | ID: mdl-34302533

ABSTRACT

The Estudo de Descontinuação de Imatinibe após Pioglitazona (EDI-PIO) is a single-center, longitudinal, prospective, phase 2, non-randomized, open, clinical trial (NCT02852486, August 2, 2016 retrospectively registered) for the discontinuation of imatinib after concomitant use of pioglitazone, being the first of its kind in a Brazilian population with chronic myeloid leukemia. Due to remaining of leukemic quiescent cells that are not affected by tyrosine kinase inhibitors, it has been suggested the use of pioglitazone, a PPARγ agonist, together with imatinib as a strategy for the maintenance of deep molecular response. The clinical benefit to this association is still controversial, and the metabolic alteration along this process remains unclear. Therefore, we applied a metabolomic protocol using high-resolution mass spectrometry to profile plasmatic metabolic response of a prospective cohort of ten individuals under discontinuation of imatinib and pioglitazone protocol. By comparing patients under pioglitazone and imatinib treatment with imatinib monotherapy and discontinuation phase, we were able to annotate 41 and 36 metabolites, respectively. The metabolic alterations observed during imatinib-pioglitazone combined therapy are associated with an extensive lipid remodeling, with activation of ß-oxidation pathway, in addition to the presence of markers that suggest mitochondrial dysfunction.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/adverse effects , Biomarkers, Tumor/metabolism , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Metabolic Diseases/pathology , Metabolome , Withholding Treatment , Adult , Aged , Female , Follow-Up Studies , Humans , Imatinib Mesylate/administration & dosage , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Longitudinal Studies , Male , Metabolic Diseases/chemically induced , Metabolic Diseases/metabolism , Middle Aged , Non-Randomized Controlled Trials as Topic , Pioglitazone/administration & dosage , Prognosis , Prospective Studies , Retrospective Studies , Young Adult
6.
Anal Chem ; 93(4): 2471-2479, 2021 02 02.
Article in English | MEDLINE | ID: mdl-33471512

ABSTRACT

COVID-19 is still placing a heavy health and financial burden worldwide. Impairment in patient screening and risk management plays a fundamental role on how governments and authorities are directing resources, planning reopening, as well as sanitary countermeasures, especially in regions where poverty is a major component in the equation. An efficient diagnostic method must be highly accurate, while having a cost-effective profile. We combined a machine learning-based algorithm with mass spectrometry to create an expeditious platform that discriminate COVID-19 in plasma samples within minutes, while also providing tools for risk assessment, to assist healthcare professionals in patient management and decision-making. A cross-sectional study enrolled 815 patients (442 COVID-19, 350 controls and 23 COVID-19 suspicious) from three Brazilian epicenters from April to July 2020. We were able to elect and identify 19 molecules related to the disease's pathophysiology and several discriminating features to patient's health-related outcomes. The method applied for COVID-19 diagnosis showed specificity >96% and sensitivity >83%, and specificity >80% and sensitivity >85% during risk assessment, both from blinded data. Our method introduced a new approach for COVID-19 screening, providing the indirect detection of infection through metabolites and contextualizing the findings with the disease's pathophysiology. The pairwise analysis of biomarkers brought robustness to the model developed using machine learning algorithms, transforming this screening approach in a tool with great potential for real-world application.


Subject(s)
COVID-19/diagnosis , Machine Learning , Metabolomics , Adult , Aged , Automation , Biomarkers/metabolism , Brazil , COVID-19/virology , Female , Humans , Male , Middle Aged , Risk Assessment , SARS-CoV-2/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...