Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(12)2023 Jun 18.
Article in English | MEDLINE | ID: mdl-37373458

ABSTRACT

Lettuce (Lactuca sativa L.) is one of the commercially important leafy vegetables worldwide. However, lettuce cultivars vary widely in their carotenoid concentrations at the time of harvest. While the carotenoid content of lettuce can depend on transcript levels of key biosynthetic enzymes, genes that can act as biomarkers for carotenoid accumulation at early stages of plant growth have not been identified. Transcriptomic and metabolomic analysis was performed on the inner and outer leaves of the six cultivars at different developmental stages to identify gene-to-metabolite networks affecting the accumulation of two key carotenoids, ß-carotene and lutein. Statistical analysis, including principal component analysis, was used to better understand variations in carotenoid concentration between leaf age and cultivars. Our results demonstrate that key enzymes of carotenoid biosynthesis pathway can alter lutein and ß-carotene biosynthesis across commercial cultivars. To ensure high carotenoids content in leaves, the metabolites sink from ß-carotene and lutein to zeaxanthin, and subsequently, abscisic acid needs to be regulated. Based on 2-3-fold carotenoids increase at 40 days after sowing (DAS) as compared to the seedling stage, and 1.5-2-fold decline at commercial stage (60 DAS) compared to the 40 DAS stage, we conclude that the value of lettuce for human nutrition would be improved by use of less mature plants, as the widely-used commercial stage is already at plant senescence stage where carotenoids and other essential metabolites are undergoing degradation.


Subject(s)
Lactuca , beta Carotene , Humans , beta Carotene/metabolism , Lactuca/metabolism , Lutein , Seedlings/metabolism , Carotenoids/metabolism
2.
Food Chem ; 308: 125443, 2020 Mar 05.
Article in English | MEDLINE | ID: mdl-31654979

ABSTRACT

Amongst green leafy vegetables, new varieties of lettuce enriched in lutein and ß-carotene are being developed to provide increased supply of dietary carotenoids. We investigated the effect of lettuce genotypes (varieties) and thermal treatments on lutein and ß-carotene bioaccessibility to the micellar fraction (and also carotenoid bioavailability) using a human Caco-2 cell model system. Carotenoid absorption by mammalian cells is not correlated with initial carotenoid concentration in fresh lettuce leaves. While thermal treatment of lettuce leaves increases carotenoid availability, resulting in higher lutein and ß-carotene absorption, disruption of the food matrix by prior cooking results in reduced carotenoid levels and transfer to the micellar fraction. Unless the food matrix is disrupted through breeding or post-harvest treatments, absorption of carotenoids from biofortified lettuce remains similar to lettuce cultivars with low carotenoid levels. Genetic improvement programs for biofortified lettuce varieties need to focus on increasing the carotenoid bioavailability from the food matrix.


Subject(s)
Food, Fortified , Lactuca/metabolism , Lutein/metabolism , beta Carotene/metabolism , Biological Availability , Caco-2 Cells , Cooking/methods , Humans , Vegetables/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...