Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Commun Biol ; 6(1): 1058, 2023 10 18.
Article in English | MEDLINE | ID: mdl-37853179

ABSTRACT

Several drug screening campaigns identified Calpeptin as a drug candidate against SARS-CoV-2. Initially reported to target the viral main protease (Mpro), its moderate activity in Mpro inhibition assays hints at a second target. Indeed, we show that Calpeptin is an extremely potent cysteine cathepsin inhibitor, a finding additionally supported by X-ray crystallography. Cell infection assays proved Calpeptin's efficacy against SARS-CoV-2. Treatment of SARS-CoV-2-infected Golden Syrian hamsters with sulfonated Calpeptin at a dose of 1 mg/kg body weight reduces the viral load in the trachea. Despite a higher risk of side effects, an intrinsic advantage in targeting host proteins is their mutational stability in contrast to highly mutable viral targets. Here we show that the inhibition of cathepsins, a protein family of the host organism, by calpeptin is a promising approach for the treatment of SARS-CoV-2 and potentially other viral infections.


Subject(s)
COVID-19 , Humans , SARS-CoV-2/metabolism , Cathepsins , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Antiviral Agents/chemistry , Protease Inhibitors/pharmacology , Cysteine Endopeptidases/metabolism
2.
Viruses ; 15(4)2023 04 19.
Article in English | MEDLINE | ID: mdl-37112979

ABSTRACT

Since December 2019, the world has been experiencing the COVID-19 pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and we now face the emergence of several variants. We aimed to assess the differences between the wild-type (Wt) (Wuhan) strain and the P.1 (Gamma) and Delta variants using infected K18-hACE2 mice. The clinical manifestations, behavior, virus load, pulmonary capacity, and histopathological alterations were analyzed. The P.1-infected mice showed weight loss and more severe clinical manifestations of COVID-19 than the Wt and Delta-infected mice. The respiratory capacity was reduced in the P.1-infected mice compared to the other groups. Pulmonary histological findings demonstrated that a more aggressive disease was generated by the P.1 and Delta variants compared to the Wt strain of the virus. The quantification of the SARS-CoV-2 viral copies varied greatly among the infected mice although it was higher in P.1-infected mice on the day of death. Our data revealed that K18-hACE2 mice infected with the P.1 variant develop a more severe infectious disease than those infected with the other variants, despite the significant heterogeneity among the mice.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Humans , Mice , Disease Models, Animal , Mice, Transgenic , Pandemics , SARS-CoV-2/genetics , Virulence
3.
Pathogens ; 12(3)2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36986360

ABSTRACT

The present case study describes the dermatological manifestations of COVID-19 in a patient with genetic thrombophilia (MTHFR-C677T mutation) and the identification of a SARS-CoV-2 variant of interest (VOI). A female patient, 47 years old, unvaccinated, with thrombophilia, was diagnosed with COVID-19. She presented with urticarial and maculopapular eruptions from the seventh day of symptoms, which progressed to multiple lesions with dark centers (D-dimer value > 1450 ng/mL). The dermatological manifestations disappeared after 30 days, corroborating the reduction in D-dimer levels. Viral genome sequencing revealed infection by the VOI Zeta (P.2). Antibody testing, performed 30 days after the onset of symptoms, detected only IgG. The virus neutralization test showed the highest neutralizing titer for a P.2 strain, validating the genotypic identification. Lesions were suggested to be due to infection in skin cells causing a direct cytopathic effect or release of pro-inflammatory cytokines triggering erythematous and urticarial eruptions. In addition, vascular complications are also proposed to be due to the MTHFR mutation and increased D-dimer values. This case report is an alert about COVID-19 in patients with pre-existing vascular diseases, especially in unvaccinated patients, by VOI.

4.
Front Microbiol ; 13: 1040093, 2022.
Article in English | MEDLINE | ID: mdl-36386719

ABSTRACT

Hemorrhagic fever viruses (HFVs) pose a threat to global public health owing to the emergence and re-emergence of highly fatal diseases. Viral hemorrhagic fevers (VHFs) caused by these viruses are mostly characterized by an acute febrile syndrome with coagulation abnormalities and generalized hemorrhage that may lead to life-threatening organ dysfunction. Currently, the events underlying the viral pathogenicity associated with multiple organ dysfunction syndrome still underexplored. In this minireview, we address the current knowledge of the mechanisms underlying VHFs pathogenesis and discuss the available development of preventive and therapeutic options to treat these infections. Furthermore, we discuss the potential of HFVs to cause worldwide emergencies along with factors that favor their spread beyond their original niches.

5.
Sci Rep ; 12(1): 3890, 2022 03 10.
Article in English | MEDLINE | ID: mdl-35273234

ABSTRACT

The new outbreak of coronavirus disease 2019 (COVID-19) has infected and caused the death of millions of people worldwide. Intensive efforts are underway around the world to establish effective treatments. Immunoglobulin from immunized animals or plasma from convalescent patients might constitute a specific treatment to guarantee the neutralization of the virus in the early stages of infection, especially in patients with risk factors and a high probability of progressing to severe disease. Worldwide, a few clinical trials using anti-SARS-CoV-2 immunoglobulins from horses immunized with the entire spike protein or fragments of it in the treatment of patients with COVID-19 are underway. Here, we describe the development of an anti-SARS-CoV-2 equine F(ab')2 immunoglobulin using a newly developed SARS-CoV-2 viral antigen that was purified and inactivated by radiation. Cell-based and preclinical assays showed that the F(ab')2 immunoglobulin successfully neutralizes the virus, is safe in animal models, and reduces the severity of the disease in a hamster model of SARS-CoV-2 infection and disease.


Subject(s)
COVID-19/therapy , Immunoglobulins/therapeutic use , Receptors, Immunologic/therapeutic use , SARS-CoV-2/immunology , Animals , Enzyme-Linked Immunosorbent Assay , Female , Horses/immunology , Humans , Immunoglobulins/immunology , Immunoglobulins/isolation & purification , Male , Mesocricetus/immunology , Plasmapheresis/veterinary , Receptors, Immunologic/immunology
7.
Front Immunol ; 12: 595343, 2021.
Article in English | MEDLINE | ID: mdl-33717074

ABSTRACT

Likely as in other viral respiratory diseases, SARS-CoV-2 elicit a local immune response, which includes production and releasing of both cytokines and secretory immunoglobulin (SIgA). Therefore, in this study, we investigated the levels of specific-SIgA for SARS-CoV-2 and cytokines in the airways mucosa 37 patients who were suspected of COVID-19. According to the RT-PCR results, the patients were separated into three groups: negative for COVID-19 and other viruses (NEGS, n = 5); negative for COVID-19 but positive for the presence of other viruses (OTHERS, n = 5); and the positive for COVID-19 (COVID-19, n = 27). Higher specific-SIgA for SARS-CoV-2, IFN-ß, and IFN-γ were found in the COVID-19 group than in the other groups. Increased IL-12p70 levels were observed in OTHERS group as compared to COVID-19 group. When the COVID-19 group was sub stratified according to the illness severity, significant differences and correlations were found for the same parameters described above comparing severe COVID-19 to the mild COVID-19 group and other non-COVID-19 groups. For the first time, significant differences are shown in the airway's mucosa immune responses in different groups of patients with or without respiratory SARS-CoV-2 infection.


Subject(s)
Antibodies, Viral/metabolism , COVID-19/immunology , Immunoglobulin A/metabolism , Interferons/metabolism , Lung/pathology , Nasal Mucosa/metabolism , SARS-CoV-2/physiology , Adolescent , Adult , Aged , Brazil , Child , Disease Progression , Female , Humans , Male , Middle Aged , Nasal Mucosa/immunology , Young Adult
8.
Front Cell Neurosci ; 13: 64, 2019.
Article in English | MEDLINE | ID: mdl-30949028

ABSTRACT

Growing evidences have associated Zika virus (ZIKV) infection with congenital malformations, including microcephaly. Nonetheless, signaling mechanisms that promote the disease outcome are far from being understood, affecting the development of suitable therapeutics. In this study, we applied shotgun mass spectrometry (MS)-based proteomics combined with cell biology approaches to characterize altered molecular pathways on human neuroprogenitor cells (NPC) and neurons derived from induced pluripotent stem cells infected by ZIKV-BR strain, obtained from the 2015 Brazilian outbreak. Furthermore, ZIKV-BR infected NPCs showed unique alteration of pathways involved in neurological diseases, cell death, survival and embryonic development compared to ZIKV-AF, showing a human adaptation of the Brazilian viral strain. Besides, infected neurons differentiated from NPC presented an impairment of neurogenesis and synaptogenesis processes. Taken together, these data explain that CNS developmental arrest observed in Congenital Zika Syndrome is beyond neuronal cell death.

SELECTION OF CITATIONS
SEARCH DETAIL
...