Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
BMC Ecol Evol ; 24(1): 51, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38654159

ABSTRACT

BACKGROUND: Different patterns of sex chromosome differentiation are seen in Palaeognathae birds, a lineage that includes the ratites (Struthioniformes, Rheiformes, Apterygiformes, Casuariiformes, and the sister group Tinamiformes). While some Tinamiform species have well-differentiated W chromosomes, both Z and W of all the flightless ratites are still morphologically undifferentiated. Here, we conducted a comprehensive analysis of the ZW differentiation in birds using a combination of cytogenetic, genomic, and bioinformatic approaches. The whole set of satDNAs from the emu (Dromaius novaehollandiae) was described and characterized. Furthermore, we examined the in situ locations of these satDNAs alongside several microsatellite repeats and carried out Comparative Genomic Hybridizations in two related species: the greater rhea (Rhea americana) and the tataupa tinamou (Crypturellus tataupa). RESULTS: From the 24 satDNA families identified (which represent the greatest diversity of satDNAs ever uncovered in any bird species), only three of them were found to accumulate on the emu's sex chromosomes, with no discernible accumulation observed on the W chromosome. The W chromosomes of both the greater rhea and the emu did not exhibit a significant buildup of either C-positive heterochromatin or repetitive DNAs, indicating their large undifferentiation both at morphological and molecular levels. In contrast, the tataupa tinamou has a highly differentiated W chromosome that accumulates several DNA repeats. CONCLUSION: The findings provide new information on the architecture of the avian genome and an inside look at the starting points of sex chromosome differentiation in birds.


Subject(s)
Palaeognathae , Sex Chromosomes , Animals , Sex Chromosomes/genetics , Palaeognathae/genetics , Male , Female , Evolution, Molecular , Microsatellite Repeats/genetics , Biological Evolution , Comparative Genomic Hybridization
2.
PeerJ ; 12: e16924, 2024.
Article in English | MEDLINE | ID: mdl-38525285

ABSTRACT

Background: The main cytogenetic studies of the Characidae family comprise the genera Astyanax and Psalidodon involving the use of repetitive DNA probes. However, for the microsatellite classes, studies are still scarce and the function of these sequences in the genome of these individuals is still not understood. Thus, we aimed to analyze and compare the distribution of microsatellite sequences in the species Astyanax bimaculatus and Psalidodon scabripinnis. Methods: We collected biopsies from the fins of A. bimaculatus and P. scabripinnis to perform cell culture, followed by chromosome extraction, and mapped the distribution of 14 microsatellites by FISH in both species. Results and Discussion: The diploid number observed for both species was 2n = 50, with an acrocentric B microchromosome in A. bimaculatus and a metacentric B chromosome in P. scabripinnis. Regarding FISH, 11 probes hybridized in the karyotype of A. bimaculatus mainly in centromeric regions, and 13 probes hybridized in P. scabripinnis, mainly in telomeric regions, in addition to a large accumulation of microsatellite hybridization on its B chromosome. Conclusion: Comparative FISH mapping of 14 microsatellite motifs revealed different patterns of distribution both in autosomes and supernumerary chromosomes of A. bimaculatus and P. scabripinnis, suggesting independent evolutionary processes in each of these species, representing excellent data on chromosome rearrangements and cytotaxonomy.


Subject(s)
Characidae , Animals , Characidae/genetics , Cytogenetics , Karyotyping , Centromere , Microsatellite Repeats/genetics
3.
Cancers (Basel) ; 15(23)2023 Nov 22.
Article in English | MEDLINE | ID: mdl-38067214

ABSTRACT

Detection of t(9;22), and consequent BCR::ABL1 fusion, is still a marker of worse prognosis for acute lymphoblastic leukemia (ALL), with resistance to tyrosine-kinase inhibitor therapy being a major obstacle in the clinical practice for this subset of patients. In this study, we investigated the effectiveness of targeting poly-ADP-ribose polymerase (PARP) in a model of BCR::ABL1 p190+ ALL, the most common isoform to afflict ALL patients, and demonstrated the use of experimental PARP inhibitor (PARPi), AZD2461, as a therapeutic option with cytotoxic capabilities similar to that of imatinib, the current gold standard in medical care. We characterized cytostatic profiles, induced cell death, and biomarker expression modulation utilizing cell models, also providing a comprehensive genome-wide analysis through an aCGH of the model used, and further validated PARP1 differential expression in samples of ALL p190+ patients from local healthcare institutions, as well as in larger cohorts of online and readily available datasets. Overall, we demonstrate the effectiveness of PARPi in the treatment of BCR::ABL1 p190+ ALL cell models and that PARP1 is differentially expressed in patient samples. We hope our findings help expand the characterization of molecular profiles in ALL settings and guide future investigations into novel biomarker detection and pharmacological choices in clinical practice.

4.
Pharmaceuticals (Basel) ; 16(9)2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37765037

ABSTRACT

Natural compounds with pharmacological activity, flavonoids have been the subject of an exponential increase in studies in the field of scientific research focused on therapeutic purposes due to their bioactive properties, such as antioxidant, anti-inflammatory, anti-aging, antibacterial, antiviral, neuroprotective, radioprotective, and antitumor activities. The biological potential of flavonoids, added to their bioavailability, cost-effectiveness, and minimal side effects, direct them as promising cytotoxic anticancer compounds in the optimization of therapies and the search for new drugs in the treatment of cancer, since some extensively antineoplastic therapeutic approaches have become less effective due to tumor resistance to drugs commonly used in chemotherapy. In this review, we emphasize the antitumor properties of tangeretin, a flavonoid found in citrus fruits that has shown activity against some hallmarks of cancer in several types of cancerous cell lines, such as antiproliferative, apoptotic, anti-inflammatory, anti-metastatic, anti-angiogenic, antioxidant, regulatory expression of tumor-suppressor genes, and epigenetic modulation.

5.
Front Cell Neurosci ; 17: 1153198, 2023.
Article in English | MEDLINE | ID: mdl-37362003

ABSTRACT

The potential of fluoride (F) as a neurotoxicant in humans is still controversial in the literature. However, recent studies have raised the debate by showing different mechanism of F-induced neurotoxicity, as oxidative stress, energy metabolism and inflammation in the central nervous system (CNS). In the present study, we investigated the mechanistic action of two F concentration (0.095 and 0.22 µg/ml) on gene and protein profile network using a human glial cell in vitro model over 10 days of exposure. A total of 823 genes and 2,084 genes were modulated after exposure to 0.095 and 0.22 µg/ml F, respectively. Among them, 168 were found to be modulated by both concentrations. The number of changes in protein expression induced by F were 20 and 10, respectively. Gene ontology annotations showed that the main terms were related to cellular metabolism, protein modification and cell death regulation pathways, such as the MAP kinase (MAPK) cascade, in a concentration independent manner. Proteomics confirmed the changes in energy metabolism and also provided evidence of F-induced changes in cytoskeleton components of glial cells. Our results not only reveal that F has the potential to modulate gene and protein profiles in human U87 glial-like cells overexposed to F, but also identify a possible role of this ion in cytoskeleton disorganization.

6.
Genes (Basel) ; 14(4)2023 03 28.
Article in English | MEDLINE | ID: mdl-37107574

ABSTRACT

Although molecular information for the wood stork (Mycteria americana) has been well described, data concerning their karyotypical organization and phylogenetic relationships with other storks are still scarce. Thus, we aimed to analyze the chromosomal organization and diversification of M. americana, and provide evolutionary insights based on phylogenetic data of Ciconiidae. For this, we applied both classical and molecular cytogenetic techniques to define the pattern of distribution of heterochromatic blocks and their chromosomal homology with Gallus gallus (GGA). Maximum likelihood analyses and Bayesian inferences (680 bp COI and 1007 bp Cytb genes) were used to determine their phylogenetic relationship with other storks. The results confirmed 2n = 72, and the heterochromatin distribution pattern was restricted to centromeric regions of the chromosomes. FISH experiments identified fusion and fission events involving chromosomes homologous to GGA macrochromosome pairs, some of which were previously found in other species of Ciconiidae, possibly corresponding to synapomorphies for the group. Phylogenetic analyses resulted in a tree that recovered only Ciconinii as a monophyletic group, while Mycteriini and Leptoptlini tribes were configured as paraphyletic clades. In addition, the association between phylogenetic and cytogenetic data corroborates the hypothesis of a reduction in the diploid number throughout the evolution of Ciconiidae.


Subject(s)
Chromosomes , Diploidy , Animals , Phylogeny , Bayes Theorem , Chickens/genetics
7.
Biomed Pharmacother ; 162: 114641, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37023622

ABSTRACT

Drug abuse is a global public health problem among adolescents, with alcohol often used in association with other psychotropic drugs, such as ketamine. Considering the scarcity of evidence, this study aimed to investigate emotional behavioral effects induced by ethanol plus ketamine co-abuse, as well as oxidative biochemistry, and neurotrophic mediator in the prefrontal cortex and hippocampus in the early withdrawal of adolescent female rats. Animals were divided into control, ethanol, ketamine, and ethanol plus ketamine groups. The protocol administration was performed for 3 consecutive days (binge-like pattern). Behavioral assays of open field, elevated plus maze, and forced swim test were performed. After that, the prefrontal cortex and hippocampus were collected to evaluate oxidative biochemistry (reactive oxygen species-ROS; Antioxidant capacity against peroxyl radicals-ACAP; and lipid peroxidation). We found that isolated or combined ethanol and ketamine exposure displayed anxiety- and depressive-like profile, in a non-synergistically manner during early withdrawal. However, oxidative damage was aggravated in the co-administered animals than in isolated exposed subjects. We concluded that ethanol plus ketamine co-abuse may intensify oxidative damage in the hippocampus and prefrontal cortex in the early withdrawal of adolescent female rats, which was not reflected in the emotional behavioral phenotype. DATA AVAILABILITY STATEMENT: The datasets used and/or analyzed during the current investigation are available upon reasonable request from the corresponding author.


Subject(s)
Alcoholism , Ketamine , Rats , Female , Animals , Ketamine/pharmacology , Ethanol/pharmacology , Oxidative Stress , Prefrontal Cortex , Anxiety
8.
J Fish Biol ; 102(2): 520-524, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36321966

ABSTRACT

Although Astyanax bimaculatus is the most representative species of the genus in the Amazon region, there are no cytogenetic studies of A. bimaculatus species in Amazon region. Thus, we aimed to analyse the chromosome complements of specimens from this area using classic and molecular cytogenetic approaches. The results revealed the existence of a distinct cytotype and this is the first report of the occurrence of a B microchromosome in the species. Overall, these data indicate that the karyotypic evolution of this species is complex, involving the occurrence of chromosomal rearrangements.


Subject(s)
Characidae , Characiformes , Animals , Characiformes/genetics , Karyotype , Karyotyping , Ploidies , Brazil
9.
Biol Trace Elem Res ; 201(3): 1151-1162, 2023 Mar.
Article in English | MEDLINE | ID: mdl-35378667

ABSTRACT

The central nervous system is the main target of MeHg toxicity and glial cells are the first line of defense; however, their true role remains unclear. This study aimed to identify the global map of human glial-like (U87) cells transcriptome after exposure to a non-toxic and non-lethal MeHg concentration and to investigate the related molecular changes. U87 cells were exposed upon 0.1, 0.5, and 1 µM MeHg for 4 and 24 h. Although no changes were observed in the percentage of viable cells, the metabolic viability was significantly decreased after exposure to 1 µM MeHg for 24 h; thus, the non-toxic concentration of 0.1 µM MeHg was chosen to perform microarray analysis. Significant changes in U87 cells transcriptome were observed only after 24 h. The expression of 392 genes was down regulated while 431 genes were up-regulated. Gene ontology showed alterations in biological processes (75%), cellular components (21%), and molecular functions (4%). The main pathways showed by KEGG and Reactome were cell cycle regulation and Rho GTPase signaling. The complex mechanism of U87 cells response against MeHg exposure indicates that even a low and non-toxic concentration is able to alter the gene expression profile.


Subject(s)
Astrocytes , Methylmercury Compounds , Humans , Astrocytes/metabolism , Transcriptome , Methylmercury Compounds/toxicity , Methylmercury Compounds/metabolism , Central Nervous System/metabolism , Signal Transduction
10.
Genes (Basel) ; 13(11)2022 11 18.
Article in English | MEDLINE | ID: mdl-36421821

ABSTRACT

The COVID-19 pandemic initiated a race to determine the best measures to control the disease and to save as many people as possible. Efforts to implement social distancing, the use of masks, and massive vaccination programs turned out to be essential in reducing the devastating effects of the pandemic. Nevertheless, the high mutation rates of SARS-CoV-2 challenge the vaccination strategy and maintain the threat of new outbreaks due to the risk of infection surges and even lethal variations able to resist the effects of vaccines and upset the balance. Most of the new therapies tested against SARS-CoV-2 came from already available formulations developed to treat other diseases, so they were not specifically developed for SARS-CoV-2. In parallel, the knowledge produced regarding the molecular mechanisms involved in this disease was vast due to massive efforts worldwide. Taking advantage of such a vast molecular understanding of virus genomes and disease mechanisms, a targeted molecular therapy based on siRNA specifically developed to reach exclusive SARS-CoV-2 genomic sequences was tested in a non-transformed human cell model. Since coronavirus can escape from siRNA by producing siRNA inhibitors, a complex strategy to simultaneously strike both the viral infectious mechanism and the capability of evading siRNA therapy was developed. The combined administration of the chosen produced siRNA proved to be highly effective in successfully reducing viral load and keeping virus replication under control, even after many days of treatment, unlike the combinations of siRNAs lacking this anti-anti-siRNA capability. Additionally, the developed therapy did not harm the normal cells, which was demonstrated because, instead of testing the siRNA in nonhuman cells or in transformed human cells, a non-transformed human thyroid cell was specifically chosen for the experiment. The proposed siRNA combination could reduce the viral load and allow the cellular recovery, presenting a potential innovation for consideration as an additional strategy to counter or cope COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Pandemics , Virus Replication/genetics , Genome, Viral , RNA, Small Interfering/genetics
11.
Oxid Med Cell Longev ; 2022: 7207755, 2022.
Article in English | MEDLINE | ID: mdl-36329802

ABSTRACT

Alcohol consumption is spread worldwide and can lead to an abuse profile associated with severe health problems. Adolescents are more susceptible to addiction and usually consume ethanol in a binge drinking pattern. This form of consumption can lead to cognitive and emotional disorders, however scarce studies have focused on long-term hazardous effects following withdrawal periods after binge drinking in adolescents. Thus, the present study aims at investigating whether behavioral and cognitive changes persist until mid and late adulthood. Female Wistar rats (9-10 animals/group) received intragastric administration of four cycles of ethanol binge-like pattern (3.0 g/kg/day, 20% w/v; 3 days-on/4 days-off) from 35th to 58th days old, followed withdrawal checkpoints 1 day, 30 days, and 60 days. At each checkpoint period, behavioral tests of open field, object recognition test, elevated plus maze, and forced swimming test were performed, and blood and hippocampus were collected for oxidative biochemistry and brain-derived neurotrophic factor (BDNF) levels analysis, respectively. The results demonstrated that adolescent rats exposed to binge drinking displayed anxiogenic- and depressive-like phenotype in early and midadulthood, however, anxiety-like profile persisted until late adulthood. Similarly, short-term memory was impaired in all withdrawal periods analysed, including late adult life. These behavioral data were associated with oxidative damage in midadulthood but not BDNF alterations. Taken together, the present work highlights the long-lasting emotional and cognitive alterations induced by ethanol binge drinking during adolescence, even after a long period of abstinence, which might impact adult life.


Subject(s)
Binge Drinking , Ethanol , Animals , Rats , Female , Ethanol/pharmacology , Rats, Wistar , Alcohol Drinking , Hippocampus
12.
Animals (Basel) ; 12(21)2022 Nov 06.
Article in English | MEDLINE | ID: mdl-36359176

ABSTRACT

Microchromosomes, once considered unimportant elements of the genome, represent fundamental building blocks of bird karyotypes. Shorebirds (Charadriiformes) comprise a wide variety of approximately 390 species and are considered a valuable model group for biological studies. Despite this variety, cytogenetic analysis is still very scarce in this bird order. Thus, the aim of this study was to provide insight into the Charadriiformes karyotype, with emphasis on microchromosome evolution in three species of shorebirds-Calidris canutus, Jacana jacana, and Vanellus chilensis-combining classical and molecular approaches. Cross-species FISH mapping applied two BAC probes for each microchromosome, GGA10-28 (except GGA16). The experiments revealed different patterns of microchromosome organization in the species investigated. Hence, while in C. canutus, we found two microchromosomes involved in chromosome fusions, they were present as single pairs in V. chilensis. We also described a new chromosome number for C. canutus (2n = 92). Hence, this study contributed to the understanding of genome organization and evolution of three shorebird species.

13.
Pharmaceuticals (Basel) ; 15(11)2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36355545

ABSTRACT

Ketamine, also called 'K-powder' by abusers, an analog of phencyclidine, primarily acts as an antagonist of N-methyl-D-aspartic acid (NMDA) receptors, therapeutically used as an anesthetic agent. Ketamine also stimulates the limbic system, inducing hallucinations and dissociative effects. At sub-anesthetic doses, ketamine also displays hallucinatory and dissociative properties, but not loss of consciousness. These behavioral consequences have elicited its recreational use worldwide, mainly at rave parties. Ketamine is generally a drug of choice among teenagers and young adults; however, the harmful consequences of its recreational use on adolescent central nervous systems are poorly explored. Thus, the aim of the present study was to characterize the behavioral and biochemical consequences induced by one binge-like cycle of ketamine during the early withdrawal period in adolescent female rats. Adolescent female Wistar rats (n = 20) received intraperitoneally administered ketamine (10 mg/kg/day) for 3 consecutive days. Twenty-four hours after the last administration of ketamine, animals were submitted to behavioral tests in an open field, elevated plus-maze, and forced swimming test. Then, animals were intranasally anesthetized with 2% isoflurane and euthanized to collect prefrontal cortex and hippocampus to assess lipid peroxidation, antioxidant capacity against peroxyl radicals, reactive oxygen species, reduced glutathione, and brain-derived neurotrophic factor (BDNF) levels. Our results found that 24 h after recreational ketamine use, emotional behavior disabilities, such as anxiety- and depression-like profiles, were detected. In addition, spontaneous ambulation was reduced. These negative behavioral phenotypes were associated with evidence of oxidative stress on the prefrontal cortex and hippocampus.

14.
Pharmaceutics ; 14(9)2022 Aug 25.
Article in English | MEDLINE | ID: mdl-36145532

ABSTRACT

Multiple myeloma (MM) is a blood cell neoplasm characterized by excessive production of malignant monoclonal plasma cells (activated B lymphocytes) by the bone marrow, which end up synthesizing antibodies or antibody fragments, called M proteins, in excess. The accumulation of this production, both cells themselves and of the immunoglobulins, causes a series of problems for the patient, of a systemic and local nature, such as blood hyperviscosity, renal failure, anemia, bone lesions, and infections due to compromised immunity. MM is the third most common hematological neoplasm, constituting 1% of all cancer cases, and is a disease that is difficult to treat, still being considered an incurable disease. The treatments currently available cannot cure the patient, but only extend their lifespan, and the main and most effective alternative is autologous hematopoietic stem cell transplantation, but not every patient is eligible, often due to age and pre-existing comorbidities. In this context, the search for new therapies that can bring better results to patients is of utmost importance. Protein tyrosine kinases (PTKs) are involved in several biological processes, such as cell growth regulation and proliferation, thus, mutations that affect their functionality can have a great impact on crucial molecular pathways in the cells, leading to tumorigenesis. In the past couple of decades, the use of small-molecule inhibitors, which include tyrosine kinase inhibitors (TKIs), has been a hallmark in the treatment of hematological malignancies, and MM patients may also benefit from TKI-based treatment strategies. In this review, we seek to understand the applicability of TKIs used in MM clinical trials in the last 10 years.

15.
Curr Issues Mol Biol ; 44(6): 2472-2489, 2022 May 25.
Article in English | MEDLINE | ID: mdl-35735610

ABSTRACT

Clear cell renal cell carcinoma (KIRC) is the most common and highly malignant pathological type of kidney cancer, characterized by a profound metabolism dysregulation. As part of aspartate biosynthesis, mitochondrial GOT2 (glutamic-oxaloacetic transaminase 2) is essential for regulating cellular energy production and biosynthesis, linking multiple pathways. Nevertheless, the expression profile and prognostic significance of GOT2 in KIRC remain unclear. This study comprehensively analyzed the transcriptional levels, epigenetic regulation, correlation with immune infiltration, and prognosis of GOT2 in KIRC using rigorous bioinformatics analysis. We discovered that the expression levels of both mRNA and protein of GOT2 were remarkably decreased in KIRC tissues in comparison with normal tissues and were also significantly related to the clinical features and prognosis of KIRC. Remarkably, low GOT2 expression was positively associated with poorer overall survival (OS) and disease-free survival (DFS). Further analysis revealed that GOT2 downregulation is driven by DNA methylation in the promoter-related CpG islands. Finally, we also shed light on the influence of GOT2 expression in immune cell infiltration, suggesting that GOT2 may be a potential prognostic marker and therapeutic target for KIRC patients.

16.
Sci Rep ; 12(1): 6442, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35440701

ABSTRACT

Gliomas are the most commonly occurring malignant brain tumor characterized by an immunosuppressive microenvironment accompanied by profound epigenetic changes, thus influencing the prognosis. Glutathione peroxidase 7 (GPX7) is essential for regulating reactive oxygen species homeostasis under oxidative stress. However, little is known about the function of GPX7 in gliomas. In this study, we hypothesized that GPX7 methylation status could influence biological functions and local immune responses that ultimately impact prognosis in adult gliomas. We conducted an integrated bioinformatics analysis mining GPX7 DNA methylation status, transcriptional and survival data of glioma patients. We discovered that GPX7 was remarkably increased in glioma tissues and cell lines, and was associated with poor prognosis. This upregulation was significantly linked to clinicopathological and molecular features, besides being expressed in a cell cycle-dependent manner. Our results consistently demonstrated that upregulation of GPX7 is tightly modulated by epigenetic processes, which also impacted the overall survival of patients with low-grade gliomas (LGG). Based on the analysis of biological functions, we found that GPX7 might be involved in immune mechanisms involving both innate and adaptive immunity, type I interferon production and regulation of synaptic transmission in LGG, whereas in GBM, it is mainly related to metabolic regulation of mitochondrial dynamics. We also found that GPX7 strongly correlates with immune cell infiltration and diverse immune cell markers, suggesting its role in tumor-specific immune response and in regulating the migration of immune cell types to the tumor microenvironment. Combining these multiple data, we provided the first evidence regarding the epigenetic-mediated regulatory mechanisms underlying GPX7 activation in gliomas. Furthermore, our study brings key insights into the significant effect of GPX7 in modulating both immune molecules and in immune cell infiltration in the microenvironment of gliomas, which might impact the patient outcome, opening up future opportunities to regulate the local immune response.


Subject(s)
Brain Neoplasms , Glioma , Glutathione Peroxidase , Adult , Brain Neoplasms/metabolism , DNA Methylation , Epigenesis, Genetic , Glioma/metabolism , Glutathione Peroxidase/genetics , Glutathione Peroxidase/metabolism , Humans , Prognosis , Tumor Microenvironment/genetics
17.
Zebrafish ; 19(1): 24-31, 2022 02.
Article in English | MEDLINE | ID: mdl-35171711

ABSTRACT

The order Elopiformes includes fish species of medium to large size with a circumglobal distribution, in both the open sea, coastal, and estuarine waters. The Elopiformes are considered an excellent model for evolutionary studies due to their ample adaptive capacity, which allow them to exploit a range of different ecological niches. In this study, we analyzed the karyotype structure and distribution of two classes of repetitive DNA (microsatellites and transposable elements) in two Elopiformes species (Elops smithi and Megalops atlanticus). The results showed that the microsatellite sequences had a very similar distribution in these species, primarily associated to heterochromatin (centromeres and telomeres), suggesting these sequences contribute to the chromosome structure. In contrast, specific signals detected throughout the euchromatic regions indicate that some of these sequences may play a role in the regulation of gene expression. By contrast, the transposable elements presented a distinct distribution in the two species, pointing to a possible interspecific difference in the function of these sequences in the genomes of the two species. Therefore, the comparative genome mapping provides new insights into the structure and organization of these repetitive sequences in the Elopiformes genome.


Subject(s)
Repetitive Sequences, Nucleic Acid , Zebrafish , Animals , Chromosome Mapping , DNA Transposable Elements , Heterochromatin , Karyotype
18.
Biol Trace Elem Res ; 200(9): 3983-3995, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35013890

ABSTRACT

Mercury (Hg) is a toxic metal that became a public health problem due to environmental contamination caused by anthropogenic activity. In this sense, oral homeostasis can undergo changes due to the toxic effects of metal on the salivary glands. Therefore, our objective was to investigate the proteomic and genotoxic changes in salivary glands after exposure to inorganic mercury (IHg). Forty Wistar rats that were divided into a control group, which received distilled water, and an exposed group, which received 0.375 mg/kg of mercury chloride for 45 days via orogastric gavage. After that, the animals were euthanized, and the parotid and submandibular glands were collected for analysis of the genotoxic effects, using the comet assay and proteome global profile assessment. The results showed that IHg promoted damage to cellular DNA associated with proteomic changes that showed events such as oxidative stress, mitochondrial dysfunction, changes in the cytoskeleton, and apoptosis. Therefore, these findings show a profile of molecular changes due to the interactions of IHg with several proteins and mechanisms inherent to the cell, which consequently may result in dysfunction of the salivary glands and impaired homeostasis of the oral cavity.


Subject(s)
DNA Damage , Mercury , Proteome , Salivary Glands , Animals , Mercury/toxicity , Proteome/metabolism , Rats , Rats, Wistar , Salivary Glands/pathology , Submandibular Gland
19.
PLoS One ; 17(1): e0261252, 2022.
Article in English | MEDLINE | ID: mdl-35085268

ABSTRACT

BACKGROUND: Fluoride has become widely used in dentistry because of its effectiveness in caries control. However, evidence indicates that excessive intake interferes with the metabolic processes of different tissues. Thus, this study aimed to investigate the effects of long-term exposure to F on the parotid salivary gland of mice, from the analysis of oxidative, proteomic and genotoxic parameters. MATERIALS AND METHODS: The animals received deionized water containing 0, 10 or 50 mg/L of F, as sodium fluoride, for 60 days. After, parotid glands were collected for analysis of oxidative biochemistry, global proteomic profile, genotoxicity assessment and histopathological analyses. RESULTS: The results revealed that exposure to fluoride interfered in the biochemical homeostasis of the parotid gland, with increased levels of thiobarbituric acid reactive species and reduced glutathione in the exposed groups; as well as promoted alteration of the glandular proteomic profile in these groups, especially in structural proteins and proteins related to oxidative stress. However, genotoxic assessment demonstrated that exposure to fluoride did not interfere with DNA integrity in these concentrations and durations of exposure. Also, it was not observed histopathological alterations in parotid gland. CONCLUSIONS: Thus, our results suggest that long-term exposure to fluoride promoted modulation of the proteomic and biochemical profile in the parotid glands, without inducing damage to the genetic component. These findings reinforce the importance of rationalizing the use of fluorides to maximize their preventative effects while minimizing the environmental risks.


Subject(s)
Parotid Gland/metabolism , Proteome/drug effects , Proteomics/methods , Sodium Fluoride/adverse effects , Animals , Gene Expression Regulation/drug effects , Glutathione/metabolism , Lipid Peroxidation/drug effects , Male , Mice , Oxidation-Reduction , Parotid Gland/drug effects , Thiobarbituric Acid Reactive Substances/metabolism , Time Factors
20.
PLoS One ; 16(11): e0259905, 2021.
Article in English | MEDLINE | ID: mdl-34793511

ABSTRACT

Although most birds show karyotypes with diploid number (2n) around 80, with few macrochromosomes and many microchromosomes pairs, some groups, such as the Accipitriformes, are characterized by a large karyotypic reorganization, which resulted in complements with low diploid numbers, and a smaller number of microchromosomal pairs when compared to other birds. Among Accipitriformes, the Accipitridae family is the most diverse and includes, among other subfamilies, the subfamily Aquilinae, composed of medium to large sized species. The Black-Hawk-Eagle (Spizaetus tyrannus-STY), found in South America, is a member of this subfamily. Available chromosome data for this species includes only conventional staining. Hence, in order to provide additional information on karyotype evolution process within this group, we performed comparative chromosome painting between S. tyrannus and Gallus gallus (GGA). Our results revealed that at least 29 fission-fusion events occurred in the STY karyotype, based on homology with GGA. Fissions occurred mainly in syntenic groups homologous to GGA1-GGA5. On the other hand, the majority of the microchromosomes were found fused to other chromosomal elements in STY, indicating these rearrangements played an important role in the reduction of the 2n to 68. Comparison with hybridization pattern of the Japanese-Mountain-Eagle (Nisaetus nipalensis orientalis), the only Aquilinae analyzed by comparative chromosome painting previously, did not reveal any synapomorphy that could represent a chromosome signature to this subfamily. Therefore, conclusions about karyotype evolution in Aquilinae require additional painting studies.


Subject(s)
Chickens/genetics , Chromosome Painting/veterinary , Raptors/genetics , Animals , Cells, Cultured , Chromosomes, Artificial, Bacterial , DNA Probes , Evolution, Molecular , Female , Gene Fusion , In Situ Hybridization, Fluorescence/veterinary , Karyotype , Phylogeography
SELECTION OF CITATIONS
SEARCH DETAIL
...