Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurochem ; 145(5): 409-416, 2018 06.
Article in English | MEDLINE | ID: mdl-29337365

ABSTRACT

Cellular prion protein (PrPC ) is widely expressed and displays a variety of well-described functions in the central nervous system (CNS). Mutations of the PRNP gene are known to promote genetic human spongiform encephalopathies, but the components of gain- or loss-of-function mutations to PrPC remain a matter for debate. Among the proteins described to interact with PrPC is Stress-inducible protein 1 (STI1), a co-chaperonin that is secreted from astrocytes and triggers neuroprotection and neuritogenesis through its interaction with PrPC . In this work, we evaluated the impact of different PrPC pathogenic point mutations on signaling pathways induced by the STI1-PrPC interaction. We found that some of the pathogenic mutations evaluated herein induce partial or total disruption of neuritogenesis and neuroprotection mediated by mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinases 1 and 2 (ERK1/2) and protein kinase A (PKA) signaling triggered by STI1-PrPC engagement. A pathogenic mutant PrPC that lacked both neuroprotection and neuritogenesis activities fail to promote negative dominance upon wild-type PrPC . Also, a STI1-α7-nicotinic acetylcholine receptor-dependent cellular signaling was present in a PrPC mutant that maintained both neuroprotection and neuritogenesis activities similar to what has been previously observed by wild-type PrPC . These results point to a loss-of-function mechanism underlying the pathogenicity of PrPC mutations.


Subject(s)
Heat-Shock Proteins/metabolism , Neurons/pathology , PrPC Proteins/genetics , PrPC Proteins/metabolism , Signal Transduction/physiology , Animals , Cell Differentiation/genetics , Cell Line , Cell Survival/genetics , Mice , Mutation , Neurons/metabolism , Prion Proteins/genetics , Prion Proteins/metabolism
2.
Clin Exp Metastasis ; 33(5): 441-51, 2016 06.
Article in English | MEDLINE | ID: mdl-27112151

ABSTRACT

Colorectal cancer (CRC) is one of the most frequently diagnosed malignancies. The generation of conventional treatments has improved, but approximately 50 % of patients with CRC who undergo potentially curative surgery ultimately relapse and die, usually as a consequence of metastatic disease. Our previous findings showed that engagement of the cellular prion protein (PrP(C)) to its ligand HSP70/90 heat shock organizing protein (HOP) induces proliferation of glioblastomas. In addition, PrP(C) has been described as an important modulator of colorectal tumor growth. Here, we investigated the biological relevance of the PrP(C)-HOP interaction in CRC cells. We demonstrate that HOP induced the migration and invasion of CRC cell lines in a PrP(C)-dependent manner and that phosphorylation of the ERK1/2 pathway is a downstream mediator of these effects. Additionally, we show that a HOP peptide with the ability to bind PrP(C) and abolish the PrP(C)-HOP interaction inhibited the migration and invasion of CRC cells. Together, these data indicate that the disruption of the PrP(C)-HOP complex could be a potential therapeutic target for modulating the migratory and invasive cellular properties that lead to metastatic CRC.


Subject(s)
Colorectal Neoplasms/genetics , Homeodomain Proteins/genetics , Neoplasm Metastasis/genetics , Prion Proteins/genetics , Tumor Suppressor Proteins/genetics , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Colorectal Neoplasms/pathology , Homeodomain Proteins/metabolism , Humans , MAP Kinase Signaling System/genetics , Neoplasm Invasiveness/genetics , Neoplasm Metastasis/pathology , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/pathology , Phosphorylation , Prion Proteins/metabolism , Protein Binding , Protein Interaction Maps/genetics , Tumor Suppressor Proteins/metabolism
3.
Brain Res ; 1394: 90-104, 2011 Jun 07.
Article in English | MEDLINE | ID: mdl-21354109

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a progressive degenerative disorder affecting motoneurons and the SOD1(G93A) transgenic mice are widely employed to study disease physiopathology and therapeutic strategies. Despite the cellular and biochemical evidences of an early motor system dysfunction, the conventional behavioral tests do not detect early motor impairments in SOD1 mouse model. We evaluated early changes in motor behavior of ALS mice by doing the analyses of tail elevation, footprint, automatic recording of motor activities by means of an infrared motion sensor activity system and electrophysiological measurements in male and female wild-type (WT) and SOD1(G93A) mice from postnatal day (P) 20 up to endpoint. The classical evaluations of mortality, weight loss, tremor, rotometer, hanging wire and inclined plane were also employed. There was a late onset (after P90) of the impairments of classical parameters and the outcome varied between genders of ALS mice, being tremor, cumulative survival, weight loss and neurological score about 10 days earlier in male than female ALS mice and also about 20 days earlier in ALS males regarding rotarod and hanging wire performances. While diminution of hindpaw base was 10 days earlier in ALS males (P110) compared to females, the steep length decreased 40 days earlier in ALS females (P60) than ALS males. The automatic analysis of motor impairments showed substantial late changes (after P90) of motility and locomotion in the ALS females, but not in the ALS males. It was surprising that the scores of tail elevation were already decreased in ALS males and females by P40, reaching the minimal values at the endpoint. The electrophysiological analyses showed early changes of measures in the ALS mouse sciatic nerve, i.e., decreased values of amplitude (P40) and nerve conduction velocity (P20), and also an increased latency (P20) reaching maximal level of impairments at the late disease phase. The early changes were not accompanied by reductions of neuronal protein markers of neurofilament 200 and ChAT in the ventral part of the lumbar spinal cord of P20 and P60 ALS mice by means of Western blot technique, despite remarkable decreases of those protein levels in P120 ALS mice. In conclusion, early changes of motor behavior and electrophysiological parameters in ALS mouse model must be taken into attention in the analyses of disease mechanisms and therapeutic effects.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Amyotrophic Lateral Sclerosis/physiopathology , Disease Models, Animal , Action Potentials/physiology , Animals , Blotting, Western , Disease Progression , Electrophysiology , Female , Male , Mice , Mice, Transgenic , Sex Characteristics , Superoxide Dismutase/genetics
4.
Acta Histochem ; 112(6): 604-17, 2010 Nov.
Article in English | MEDLINE | ID: mdl-19665173

ABSTRACT

Despite the favorable treatment of cranial nerve neuropathology in adulthood, some cases are resistant to therapy leading to permanent functional impairments. In many cases, suitable treatment is problematic as the therapeutic target remains unknown. Basic fibroblast growth factor (bFGF, FGF-2) is involved in neuronal maintenance and wound repair following nervous system lesions. It is one of few neurotrophic molecules acting in autocrine, paracrine and intracrine fashions depending upon specific circumstances. Peripheral cranial somatic motor neurons, i.e. hypoglossal (XII) neurons, may offer a unique opportunity to study cellular FGF-2 mechanisms as the molecule is present in the cytoplasm of neurons and in the nuclei of astrocytes of the central nervous system. FGF-2 may trigger differential actions during development, maintenance and lesion of XII neurons because axotomy of those cells leads to cell death during neonatal ages, but not in adult life. Moreover, the modulatory effects of astroglial FGF-2 and the Ca+2-binding protein S100ß have been postulated in paracrine mechanisms after neuronal lesions. In our study, adult Wistar rats received a unilateral crush or transection (with amputation of stumps) of XII nerve, and were sacrificed after 72h or 11 days. Brains were processed for immunohistochemical localization of neurofilaments (NF), with or without counterstaining for Nissl substance, glial fibrillary acidic protein (GFAP, as a marker of astrocytes), S100ß and FGF-2. The number of Nissl-positive neurons of axotomized XII nucleus did not differ from controls. The NF immunoreactivity increased in the perikarya and decreased in the neuropil of axotomized XII neurons 11 days after nerve crush or transection. An astrocytic reaction was seen in the ipsilateral XII nucleus of the crushed or transected animals 72h and 11 days after the surgery. The nerve lesions did not change the number of FGF-2 neurons in the ipsilateral XII nucleus; however, the nerve transection increased the number of FGF-2 glial profiles by 72h and 11 days. Microdensitometric image analysis revealed a short lasting decrease in the intensity of FGF-2 immunoreactivity in axotomized XII neurons by 72h after nerve crush or transection and also an elevation of FGF-2 in the ipsilateral of glial nuclei by 72h and 11 days after the two lesions. S100ß decreased in astrocytes of 11-day-transected XII nucleus. The two-color immunoperoxidase for the simultaneous detection of the GFAP/FGF-2 indicated FGF-2 upregulation in the nuclei of reactive astrocytes of the lesioned XII nucleus. Astroglial FGF-2 may exert paracrine trophic actions in mature axotomized XII neurons and might represent a therapeutic target for neuroprotection in peripheral nerve pathology.


Subject(s)
Astrocytes/metabolism , Fibroblast Growth Factor 2/metabolism , Hypoglossal Nerve/pathology , Neurons/metabolism , Animals , Astrocytes/pathology , Axotomy , Cytoprotection , Hypoglossal Nerve/physiology , Immunohistochemistry , Male , Neurons/pathology , Rats , Rats, Wistar
5.
J Mol Histol ; 40(4): 241-50, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19882358

ABSTRACT

Neuron-glia interaction is involved in physiological function of neurons, however recent evidences have suggested glial cells as participants in neurotoxic and neurotrophic mechanisms of neurodegenerative/neuroregenerative processes. Histological techniques employing immunolabeling, historadiography and in situ hybridization have been useful to localize at cell levels molecules in normal and pathological situations. The intercellular accomplishment leading to neuronal injury in central nervous system disorders implies the performance of quantitative assays to better interpret the role of related molecules or signal pathways, however one limitation employing the whole tissue is the loss of cellular resolution. The laser capture microdissection was developed recently and allows the selection of specific cell types from their original environment after freezing and sectioning the tissue sampling, leading to the quantification of gene expression in individual cells, thus providing a unique opportunity to get new informations on cell signaling related to neurodegeneration. Here we reviewed the role of glial cell signaling on neurodegenerative disorders like ischemia, Parkinson and Alzheimer diseases, and also amyotrophic lateral sclerosis and what has been published with regards to single cell laser capture microdissection technique in the molecular biology investigation on these issues.


Subject(s)
Alzheimer Disease/metabolism , Brain Ischemia/metabolism , Microdissection/methods , Neuroglia/metabolism , Parkinson Disease/metabolism , Alzheimer Disease/pathology , Animals , Brain Ischemia/pathology , Humans , Immunohistochemistry/methods , In Situ Hybridization/methods , Lasers , Neuroglia/pathology , Neurons/metabolism , Neurons/pathology , Parkinson Disease/pathology , Rats
6.
J Mol Histol ; 40(3): 217-25, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19830581

ABSTRACT

Neuron-glia interaction is involved in physiological function of neurons, however, recent evidences have suggested glial cells as participants in neurotoxic and neurotrophic mechanisms of neurodegenerative/neuroregenerative processes. Laser microdissection offers a unique opportunity to study molecular regulation in specific immunolabeled cell types. However, an adequate protocol to allow morphological and molecular analysis of rodent spinal cord astrocyte, microglia and motoneurons remains a big challenge. In this paper we present a quick method to immunolabel those cells in flash frozen sections to be used in molecular biology analyses after laser microdissection and pressure catapulting.


Subject(s)
Fluorescent Antibody Technique/methods , Lasers , Microdissection , Neurodegenerative Diseases/pathology , Neuroglia/pathology , Neurons/pathology , Spinal Cord/pathology , Staining and Labeling/methods , Animals , Male , Mice , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...