Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Planta Med ; 89(11): 1097-1105, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37084791

ABSTRACT

Oral preparations of Casearia sylvestris (guacatonga) are used as antacid, analgesic, anti-inflammatory, and antiulcerogenic medicines. The clerodane diterpenes casearin B and caseargrewiin F are major active compounds in vitro and in vivo. The oral bioavailability and metabolism of casearin B and caseargrewiin F were not previously investigated. We aimed to assess the stability of casearin B and caseargrewiin F in physiological conditions and their metabolism in human liver microsomes. The compounds were identified by UHPLC-QTOF-MS/MS and quantified by validated LC-MS methods. The stability of casearin B and caseargrewiin F in physiological conditions was assessed in vitro. Both diterpenes showed a fast degradation (p < 0.05) in simulated gastric fluid. Their metabolism was not mediated by cytochrome P-450 enzymes, but the depletion was inhibited by the esterase inhibitor NaF. Both diterpenes and their dialdehydes showed a octanol/water partition coefficient in the range of 3.6 to 4.0, suggesting high permeability. Metabolism kinetic data were fitted to the Michaelis-Menten profile with KM values of 61.4 and 66.4 µM and Vmax values of 327 and 648 nmol/min/mg of protein for casearin B and caseargrewiin F, respectively. Metabolism parameters in human liver microsomes were extrapolated to predict human hepatic clearance, and suggest that caseargrewiin F and casearin B have a high hepatic extraction ratio. In conclusion, our data suggest that caseargrewiin F and casearin B present low oral bioavailability due to extensive gastric degradation and high hepatic extraction.


Subject(s)
Diterpenes, Clerodane , Humans , Diterpenes, Clerodane/chemistry , Tandem Mass Spectrometry , Liver , Microsomes, Liver
2.
Article in English | MEDLINE | ID: mdl-36462797

ABSTRACT

The development of new drugs based on metal complexes requires a detailed analysis of their biological endpoints. In this study, we report the genotoxic profile and influence on cell proliferation and death of the oxovanadium(IV) complex with orotic acid ([VO(C5H4N2O4)2], VO(oro)). Human hepatocellular carcinoma cells (HepG2) were the most sensitive tumor cells to VO(oro), which interfered with the integrity of cell membranes and proliferative capacity in a dose-dependent manner, inducing cell death by apoptosis. Regarding genotoxicity, VO(oro) did not induce considerable levels of DNA damage in HepG2 cells (comet test) and gene mutations (Ames test). However, it caused a statistically significant increase in the frequency of micronuclei at the highest concentration tested (12.5 µmol.L-1), indicating aneuploidy and clastogenicity. The data presented here provide information on various biological aspects of the VO(oro) complex, which may allow the elucidation of its mechanism of action as a possible therapeutic agent.


Subject(s)
DNA Damage , Orotic Acid , Humans , Mutagens/toxicity , Mutation , Cell Death
3.
Int Immunopharmacol ; 76: 105856, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31480005

ABSTRACT

The search for new drugs with anti-inflammatory properties remains a challenge for modern medicine. Among the various strategies for drug discovery, deriving new chemical entities from known bioactive natural and/or synthetic compounds remains a promising approach. Here, we designed and synthesized CVIB, a codrug developed by association of carvacrol (a phenolic monoterpene) with ibuprofen (a non-steroidal anti-inflammatory drug). In silico pharmacokinetic and physicochemical properties evaluation indicated low aqueous solubility (LogP ≥5.0). Nevertheless, the hybrid presented excellent oral bioavailability, gastrointestinal tract absorption, and low toxicity. CVIB did not present cytotoxicity in peripheral blood mononuclear cells (PBMCs), and promoted a significant reduction in IL-2, IL-10, IL-17, and IFN-γ cytokine levels in vitro. The LD50 was estimated to be approximately 5000 mg/kg. CVIB was stable and detectable in human plasma after 24 h. In vivo anti-inflammatory evaluations revealed that CVIB at 10 and 50 mg/kg i.p. caused a significant decrease in total leukocyte count (p < 0.01) and provoked a significant reduction in IL-1ß (p < 0.01). CVIB at 10 mg/kg i.p. efficiently decreased inflammatory parameters better than the physical mixture (carvacrol + ibuprofen 10 mg/kg i.p.). The results suggest that the codrug approach is a good option for drug design and development, creating the possibility of combining NSAIDs with natural products in order to obtain new hybrid drugs may be useful for treatment of inflammatory diseases.


Subject(s)
Anti-Inflammatory Agents , Cymenes , Ibuprofen , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacokinetics , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/toxicity , Carrageenan , Cell Survival/drug effects , Cells, Cultured , Cymenes/chemistry , Cymenes/pharmacokinetics , Cymenes/therapeutic use , Cymenes/toxicity , Cytokines/immunology , Drug Combinations , Humans , Ibuprofen/chemistry , Ibuprofen/pharmacokinetics , Ibuprofen/therapeutic use , Ibuprofen/toxicity , Lethal Dose 50 , Leukocytes, Mononuclear/drug effects , Male , Mice , Pleurisy/chemically induced , Pleurisy/drug therapy , Pleurisy/immunology , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL