Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 30(10): 26545-26558, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36367647

ABSTRACT

We evaluated the effects of a periphyton bioreactor on phytoplankton by experimentally simulating oligotrophication in a shallow eutrophic system. The experiment had two 50% diluted treatments with and without a periphyton bioreactor. Sampling was performed on days 6, 9, 12, 15, and 20 of the experimental period. The periphyton bioreactor accumulated biomass (chlorophyll-a, AFDM) and TP during the experimental period. Despite the biomass and TP loss due to periphyton detachment from the substrate after community reaching the algal biomass peak, the gains exceeded the losses, and the net rate was positive for all attributes in the bioreactor. Based on the average, our findings suggest that periphyton bioreactors negatively affected the phytoplankton total biovolume. Cyanobacteria were the most abundant phytoplankton group. However, the periphyton bioreactor caused the biomass loss of the Raphidiopsis raciborskii in phytoplankton. Our results suggest that bioreactor influenced the phytoplankton structure, reducing cyanobacterial biomass, especially Raphidiopsis raciborskii. However, the bioreactor did not reflect a significant increase in the epipelon biomass during the experimental period. We conclude that the periphyton bioreactor has the potential to assist in the maintenance of restored shallow lakes and reservoirs, especially in controlling phytoplankton growth.


Subject(s)
Cyanobacteria , Periphyton , Phytoplankton , Lakes/chemistry , Eutrophication , Biomass , Bioreactors
SELECTION OF CITATIONS
SEARCH DETAIL
...