Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
An Acad Bras Cienc ; 87(4): 2031-46, 2015.
Article in English | MEDLINE | ID: mdl-26628033

ABSTRACT

We submitted tree species occurrence and geoclimatic data from 59 sites in a river basin in the Atlantic Forest of southeastern Brazil to ordination, ANOVA, and cluster analyses with the goals of investigating the causes of phytogeographic patterns and determining whether the six recognized subregions represent distinct floristic units. We found that both climate and space were significantly (p ≤ 0.05) important in the explanation of phytogeographic patterns. Floristic variations follow thermal gradients linked to elevation in both coastal and inland subregions. A gradient of precipitation seasonality was found to be related to floristic variation up to 100 km inland from the ocean. The temperature of the warmest quarter and the precipitation during the coldest quarter were the main predictors. The subregions Sandy Coastal Plain, Coastal Lowland, Coastal Highland, and Central Depression were recognized as distinct floristic units. Significant differences were not found between the Inland Highland and the Espinhaço Range, indicating that these subregions should compose a single floristic unit encompassing all interior highlands. Because of their ecological peculiarities, the ferric outcrops within the Espinhaço Range may constitute a special unit. The floristic units proposed here will provide important information for wiser conservation planning in the Atlantic Forest hotspot.

2.
Proc Natl Acad Sci U S A ; 112(24): 7472-7, 2015 Jun 16.
Article in English | MEDLINE | ID: mdl-26034279

ABSTRACT

The high species richness of tropical forests has long been recognized, yet there remains substantial uncertainty regarding the actual number of tropical tree species. Using a pantropical tree inventory database from closed canopy forests, consisting of 657,630 trees belonging to 11,371 species, we use a fitted value of Fisher's alpha and an approximate pantropical stem total to estimate the minimum number of tropical forest tree species to fall between ∼ 40,000 and ∼ 53,000, i.e., at the high end of previous estimates. Contrary to common assumption, the Indo-Pacific region was found to be as species-rich as the Neotropics, with both regions having a minimum of ∼ 19,000-25,000 tree species. Continental Africa is relatively depauperate with a minimum of ∼ 4,500-6,000 tree species. Very few species are shared among the African, American, and the Indo-Pacific regions. We provide a methodological framework for estimating species richness in trees that may help refine species richness estimates of tree-dependent taxa.


Subject(s)
Biodiversity , Forests , Trees , Tropical Climate , Conservation of Natural Resources , Databases, Factual , Ecosystem , Phylogeography , Rainforest , Species Specificity , Statistics, Nonparametric , Trees/classification
SELECTION OF CITATIONS
SEARCH DETAIL