Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nutr Rev ; 80(10): 2100-2112, 2022 09 05.
Article in English | MEDLINE | ID: mdl-35551410

ABSTRACT

Phenylketonuria (PKU) is a rare genetic disease that causes brain toxicity due to the inability of the body to convert dietary phenylalanine to tyrosine by the action of phenylalanine hydroxylase. The only treatment for PKU so far is lifelong dietary intervention to ensure normal human growth and neurodevelopment. However, in adults, low long-term adherence to this type of dietary intervention has been observed. Given the important role of the intestinal microbiota in the process of digestion and disease prevention, probiotics could be a therapeutic strategy to help degrade dietary phenylalanine, reducing its levels before ingestion. Genetically modified probiotics designed as live biotherapeutic agents for the treatment of specific diseases are sophisticated alternative therapeutic strategies. In this review, the focus is on demonstrating what has been elucidated so far about the use of next-generation probiotics as a therapeutic strategy in the treatment of individuals with PKU. The results described in the literature are encouraging and use genetically modified engineered probiotics showing efficacy both in vitro and in vivo. These probiotics appear to be suitable for meeting the unmet need for new drugs for PKU.


Subject(s)
Phenylalanine Hydroxylase , Phenylketonurias , Probiotics , Adult , Diet , Humans , Phenylalanine/metabolism , Phenylalanine/therapeutic use , Phenylalanine Hydroxylase/genetics , Phenylalanine Hydroxylase/metabolism , Phenylalanine Hydroxylase/therapeutic use , Phenylketonurias/drug therapy , Phenylketonurias/genetics , Probiotics/therapeutic use
2.
Foods ; 10(10)2021 Oct 14.
Article in English | MEDLINE | ID: mdl-34681488

ABSTRACT

Fresh fruits and vegetables are perishable commodities requiring technologies to extend their postharvest shelf life. Edible coatings have been used as a strategy to preserve fresh fruits and vegetables in addition to cold storage and/or controlled atmosphere. In recent years, nanotechnology has emerged as a new strategy for improving coating properties. Coatings based on plant-source nanoemulsions in general have a better water barrier, and better mechanical, optical, and microstructural properties in comparison with coatings based on conventional emulsions. When antimicrobial and antioxidant compounds are incorporated into the coatings, nanocoatings enable the gradual and controlled release of those compounds over the food storage period better than conventional emulsions, hence increasing their bioactivity, extending shelf life, and improving nutritional produce quality. The main goal of this review is to update the available information on the use of nanoemulsions as coatings for preserving fresh fruits and vegetables, pointing to a prospective view and future applications.

3.
J Food Sci ; 86(8): 3341-3348, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34272735

ABSTRACT

Contamination with a variety of filamentous fungi can cause deterioration of food and agricultural products. Fungal contaminations reduce the quality and the shelf life of fresh fruits and are one of the main causes of economic loss in the global fresh fruit industry. Although chemical fungicides are effective and traditionally used to control postharvest fungal diseases, they are harmful to human health. In this context, use of RNA interference (RNAi)-based fungicides is a promising alternative strategy. Spray-induced gene silencing (SIGS) is an innovative RNAi-based approach for silencing target genes in phytopathogens. This review aims to discuss the recent findings on the use of RNAi-based fungicides to control the postharvest spoilage of fresh fruits. PRACTICAL APPLICATION: Control of postharvest fungal diseases is one of the most important strategies to make food available to consumers longer. In this sense, the external application of RNAi seems to be technologically advantageous and efficient as it helps to maintain the characteristics of plant products. In this sense, this review discussed what is possible to find in the literature regarding this new technology.


Subject(s)
Agriculture , Fruit , Fungi , Plant Diseases , RNA Interference , Agriculture/methods , Fruit/microbiology , Fungi/drug effects , Fungi/genetics , Plant Diseases/prevention & control , RNA/pharmacology
4.
J Food Sci ; 86(5): 1497-1510, 2021 May.
Article in English | MEDLINE | ID: mdl-33884624

ABSTRACT

The sunflower (Helianthus annus L.) is one of the main oil crops in the world grown for the production of edible and biodiesel oil. Byproducts of the extraction of sunflower oil constitute a raw material with potential for several applications in the food area due to its chemical composition, including the high content of proteins and phenolic compounds. Thoughtful of a consumer increasingly concerned with the environmental impact, we try to clarify in this review the potential of using sunflower seed byproducts and their fractions to enhance the production of potentially functional foods. The applications of sunflower seed byproduct include its transformation into flours/ingredients that are capable of improving the nutritional and functional value of foods. In addition, the protein isolates obtained from sunflower seed byproduct have good technological properties and improve the nutritional value of food products. These protein isolates can be used to obtain protein hydrolysates with technological and bioactive properties and as matrices for the development of edible, biodegradable, and active films for food. The sunflower seed byproduct is also a source of phenolic compounds with bioactive properties, mainly chlorogenic acid, which can be extracted by different methods and applied in the development of functional foods and active and bioactive food packaging. The use of sunflower seed byproduct and its fractions are promising ingredients for the development of healthier and less expensive foods as well as the alternative to decrease the environmental problems caused by the sunflower oil industry.


Subject(s)
Food Ingredients , Functional Food , Helianthus , Nutritive Value , Seeds , Sunflower Oil , Chlorogenic Acid , Edible Films , Protein Hydrolysates
5.
Front Bioeng Biotechnol ; 9: 802543, 2021.
Article in English | MEDLINE | ID: mdl-35155407

ABSTRACT

Bioactive compounds can provide health benefits beyond the nutritional value and are originally present or added to food matrices. However, because they are part of the food matrices, most bioactive compounds remain in agroindustrial by-products. Agro-industrial by-products are generated in large quantities throughout the food production chain and can-when not properly treated-affect the environment, the profit, and the proper and nutritional distribution of food to people. Thus, it is important to adopt processes that increase the use of these agroindustrial by-products, including biological approaches, which can enhance the extraction and obtention of bioactive compounds, which enables their application in food and pharmaceutical industries. Biological processes have several advantages compared to nonbiological processes, including the provision of extracts with high quality and bioactivity, as well as extracts that present low toxicity and environmental impact. Among biological approaches, extraction from enzymes and fermentation stand out as tools for obtaining bioactive compounds from various agro-industrial wastes. In this sense, this article provides an overview of the main bioactive components found in agroindustrial by-products and the biological strategies for their extraction. We also provide information to enhance the use of these bioactive compounds, especially for the food and pharmaceutical industries.

SELECTION OF CITATIONS
SEARCH DETAIL
...