Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Thorac Dis ; 15(6): 3208-3217, 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37426129

ABSTRACT

Background: The correlation between the release of cardiac biomarkers after revascularization, in the absence of late gadolinium enhancement (LGE) or myocardial edema, and the development of myocardial tissue damage remains unclear. This study sought to identify whether the release of biomarkers is associated with cardiac damage by assessing myocardial microstructure on T1 mapping after on-pump (ONCAB) and off-pump coronary artery bypass grafting (OPCAB). Methods: Seventy-six patients with stable multivessel coronary artery disease (CAD) and preserved systolic ventricular function were included. T1 mapping, high-sensitive cardiac troponin I (cTnI), creatine kinase myocardial band (CK-MB) mass, and ventricular dimensions and function were measured before and after procedures. Results: Of the 76 patients, 44 underwent OPCAB, and 32 ONCAB; 52 were men (68.4%), and the mean age was 63±8.5 years. In both OPCAB and ONCAB the native T1 values were similar before and after surgeries. An increase in extracellular volume (ECV) values after the procedures was observed, due to the decrease in hematocrit levels during the second cardiac resonance. However, the lambda partition coefficient showed no significant difference after the surgeries. The median peak release of cTnI and CK-MB were higher after ONCAB than after OPCAB [3.55 (2.12-4.9) vs. 2.19 (0.69-3.4) ng/mL, P=0.009 and 28.7 (18.2-55.4) vs. 14.3 (9.3-29.2) ng/mL, P=0.009, respectively]. Left ventricular ejection fraction (LVEF) was similar in both groups before and after surgery. Conclusions: In the absence of documented myocardial infarction, T1 mapping did not identify structural tissue damage after surgical revascularization with or without cardiopulmonary bypass (CPB), despite the excessive release of cardiac biomarkers.

2.
Clin Imaging ; 101: 142-149, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37348160

ABSTRACT

BACKGROUND: Stress-induced myocardial ischemia seems not to be associated with cardiovascular events. However, its effects on myocardial tissue characteristics remain under debate. Thus, we sought to assess whether documented stress-induced ischemia is associated with changes in myocardial microstructure evaluated by magnetic resonance native T1 map and extracellular volume fraction (ECV). METHODS: This is a single-center, analysis of the previously published MASS V Trial. Multivessel patients with a formal indication for myocardial revascularization and with documented stress-induced ischemia were included in this study. Native T1 and ECV values evaluated by cardiac magnetic resonance imaging of ischemic and nonischemic myocardial segments at rest and after stress were compared. Myocardial ischemia was detected by either nuclear scintigraphy or stress magnetic cardiac resonance protocol. RESULTS: Between May 2012 and March 2014, 326 prospective patients were eligible for isolated CABG or PCI and 219 were included in the MASS V trial. All patients underwent resting cardiac magnetic resonance imaging. Of a total of 840 myocardial segments, 654 were nonischemic segments and 186 were ischemic segments. Native T1 and ECV values of ischemic segments were not significantly different from nonischemic segments, both at rest and after stress induction. In addition, native T1 and ECV values of myocardial segments supplied by vessels with obstructive lesions were similar to those supplied by nonobstructive ones. CONCLUSION AND RELEVANCE: In this study, cardiac magnetic resonance identified similar T1 mapping values between ischemic and nonischemic myocardial segments. This finding suggests integrity and stability of myocardial tissue in the presence of stress-induced ischemia.


Subject(s)
Coronary Artery Disease , Myocardial Ischemia , Percutaneous Coronary Intervention , Humans , Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/pathology , Prospective Studies , Magnetic Resonance Imaging, Cine/methods , Predictive Value of Tests , Myocardium/pathology , Myocardial Ischemia/complications , Myocardial Ischemia/diagnostic imaging , Ischemia/pathology , Contrast Media
3.
Life (Basel) ; 13(4)2023 Apr 05.
Article in English | MEDLINE | ID: mdl-37109480

ABSTRACT

Despite considerable improvement in diagnostic modalities and therapeutic options over the last few decades, the global burden of ischemic heart disease is steadily rising, remaining a major cause of death worldwide. Thus, new strategies are needed to lessen cardiovascular events. Researchers in different areas such as biotechnology and tissue engineering have developed novel therapeutic strategies such as stem cells, nanotechnology, and robotic surgery, among others (3D printing and drugs). In addition, advances in bioengineering have led to the emergence of new diagnostic and prognostic techniques, such as quantitative flow ratio (QFR), and biomarkers for atherosclerosis. In this review, we explore novel diagnostic invasive and noninvasive modalities that allow a more detailed characterization of coronary disease. We delve into new technological revascularization procedures and pharmacological agents that target several residual cardiovascular risks, including inflammatory, thrombotic, and metabolic pathways.

SELECTION OF CITATIONS
SEARCH DETAIL
...