Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Behav Brain Res ; 415: 113522, 2021 10 11.
Article in English | MEDLINE | ID: mdl-34391797

ABSTRACT

BACKGROUND: Motor cortex stimulation (MCS) is proper as a non-pharmacological therapy for patients with chronic and neuropathic pain (NP). AIMS: This work aims to investigate if the MCS in the primary motor cortex (M1) produces analgesia and how the MCS could interfere in the MCS-induced analgesia. Also, to elucidate if the persistent activation of N-methyl-d-aspartic acid receptor (NMDAr) in the periaqueductal grey matter (PAG) can contribute to central sensitisation of the NP. METHODS: Male Wistar rats were submitted to the von Frey test to evaluate the mechanical allodynia after 21 days of chronic constriction injury (CCI) of the sciatic nerve. The MCS was performed with low-frequency (20 µA, 100 Hz) currents during 15 s by a deep brain stimulation (DBS) device. Moreover, the effect of M1-treatment with an NMDAr agonist (at 2, 4, and 8 nmol) was investigated in CCI rats. The PAG dorsomedial column (dmPAG) was pretreated with the NMDAr antagonist LY 235959 (at 8 nmol), followed by MCS. RESULTS: The MCS decreased the mechanical allodynia in rats with chronic NP. The M1-treatment with an NMDA agonist at 2 and 8 nmol reduced the mechanical allodynia in CCI rats. In addition, dmPAG-pretreatment with LY 235959 at 8 nmol attenuated the mechanical allodynia evoked by MCS. CONCLUSION: The M1 cortex glutamatergic system is involved in the modulation of chronic NP. The analgesic effect of MCS may depend on glutamate signaling recruitting NMDAr located on PAG neurons in rodents with chronic NP.


Subject(s)
Chronic Pain/therapy , Deep Brain Stimulation , Excitatory Amino Acid Agonists/pharmacology , Excitatory Amino Acid Antagonists/pharmacology , Motor Cortex/drug effects , Neuralgia/therapy , Periaqueductal Gray/drug effects , Receptors, N-Methyl-D-Aspartate/physiology , Analgesia , Animals , Disease Models, Animal , Isoquinolines/pharmacology , Male , Rats , Rats, Wistar , Receptors, N-Methyl-D-Aspartate/agonists , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors
2.
Dis Markers ; 2020: 9130719, 2020.
Article in English | MEDLINE | ID: mdl-33488847

ABSTRACT

Chagas disease is a neglected tropical disease caused by the parasite Trypanosoma cruzi. Despite the efforts and distinct methodologies, the search of antigens for diagnosis, vaccine, and drug targets for the disease is still needed. The present study is aimed at identifying possible antigens that could be used for diagnosis, vaccine, and drugs targets against T. cruzi using reverse vaccinology and molecular docking. The genomes of 28 T. cruzi strains available in GenBank (NCBI) were used to obtain the genomic core. Then, subtractive genomics was carried out to identify nonhomologous genes to the host in the core. A total of 2630 conserved proteins in 28 strains of T. cruzi were predicted using OrthoFinder and Diamond software, in which 515 showed no homology to the human host. These proteins were evaluated for their subcellular localization, from which 214 are cytoplasmic and 117 are secreted or present in the plasma membrane. To identify the antigens for diagnosis and vaccine targets, we used the VaxiJen software, and 14 nonhomologous proteins were selected showing high binding efficiency with MHC I and MHC II with potential for in vitro and in vivo tests. When these 14 nonhomologous molecules were compared against other trypanosomatids, it was found that the retrotransposon hot spot (RHS) protein is specific only for T. cruzi parasite suggesting that it could be used for Chagas diagnosis. Such 14 proteins were analyzed using the IEDB software to predict their epitopes in both B and T lymphocytes. Furthermore, molecular docking analysis was performed using the software MHOLline. As a result, we identified 6 possible T. cruzi drug targets that could interact with 4 compounds already known as antiparasitic activities. These 14 protein targets, along with 6 potential drug candidates, can be further validated in future studies, in vivo, regarding Chagas disease.


Subject(s)
Antiprotozoal Agents/pharmacology , Chagas Disease/diagnosis , Genome, Protozoan , Protozoan Vaccines/genetics , Trypanosoma cruzi/genetics , Antigens, Protozoan/genetics , Antigens, Protozoan/immunology , Antiprotozoal Agents/chemistry , Biomarkers/analysis , Chagas Disease/drug therapy , Chagas Disease/prevention & control , Drug Discovery , Genomics , Humans , Molecular Docking Simulation , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Protozoan Vaccines/immunology , Trypanosoma cruzi/drug effects , Trypanosoma cruzi/immunology
3.
Curr Pharm Des ; 25(37): 3983-3996, 2019.
Article in English | MEDLINE | ID: mdl-31612822

ABSTRACT

BACKGROUND: Parasitic infections affecting the central nervous system (CNS) present high morbidity and mortality rates and affect millions of people worldwide. The most important parasites affecting the CNS are protozoans (Plasmodium sp., Toxoplasma gondii, Trypanosoma brucei), cestodes (Taenia solium) and free-living amoebae (Acantamoeba spp., Balamuthia mandrillaris and Naegleria fowleri). Current therapeutic regimens include the use of traditional chemicals or natural compounds that have very limited access to the CNS, despite their elevated toxicity to the host. Improvements are needed in drug administration and formulations to treat these infections and to allow the drug to cross the blood-brain barrier (BBB). METHODS: This work aims to elucidate the recent advancements in the use of nanoparticles as nanoscaled drug delivery systems (NDDS) for treating and controlling the parasitic infections that affect the CNS, addressing not only the nature and composition of the polymer chosen, but also the mechanisms by which these nanoparticles may cross the BBB and reach the infected tissue. RESULTS: There is a strong evidence in the literature demonstrating the potential usefulness of polymeric nanoparticles as functional carriers of drugs to the CNS. Some of them demonstrated the mechanisms by which drugloaded nanoparticles access the CNS and control the infection by using in vivo models, while others only describe the pharmacological ability of these particles to be utilized in in vitro environments. CONCLUSION: The scarcity of the studies trying to elucidate the compatibility as well as the exact mechanisms by which NDDS might be entering the CNS infected by parasites reveals new possibilities for further exploratory projects. There is an urgent need for new investments and motivations for applying nanotechnology to control parasitic infectious diseases worldwide.


Subject(s)
Blood-Brain Barrier , Central Nervous System Diseases/drug therapy , Drug Delivery Systems , Nanoparticles , Parasitic Diseases/drug therapy , Central Nervous System Diseases/parasitology , Humans , Nanotechnology
4.
Anal Bioanal Chem ; 409(13): 3289-3297, 2017 May.
Article in English | MEDLINE | ID: mdl-28343345

ABSTRACT

Cancer is responsible for millions of deaths worldwide, but most base diseases may be cured if detected early. Screening tests may be used to identify early-stage malignant neoplasms. However, the major screening tool for prostate cancer, the prostate-specific antigen test, has unsuitable sensitivity. Since cancer cells may affect the pattern of consumption and excretion of nucleosides, such biomolecules are putative biomarkers that can be used for diagnosis and treatment evaluation. Using a previously validated method for the analysis of nucleosides in blood serum by capillary electrophoresis with UV-vis spectroscopy detection, we investigated 60 samples from healthy individuals and 42 samples from prostate cancer patients. The concentrations of nucleosides in both groups were compared and a multivariate partial least squares-discriminant analysis classification model was optimized for prediction of prostate cancer. The validation of the model with an independent sample set resulted in the correct classification of 82.4% of the samples, with sensitivity of 90.5% and specificity of 76.7%. A significant downregulation of 5-methyluridine and inosine was observed, which can be indicative of the carcinogenic process. Therefore, such analytes are potential candidates for prostate cancer screening. Graphical Abstract Separation of the studied nucleosides and the internal standard 8-Bromoguanosine by CE-UV (a); classification of the external validation samples (30 from healthy volunteers and 21 from prostate cancer patients) by the developed Partial Least Square - Discriminant Analysis (PLS-DA) model with accuracy of 82.4% (b); Receiver Operating Characteristics (ROC) curve (c); and Variable Importance in the Projection (VIP) values for the studied nucleosides (d). A significant down-regulation of 5- methyluridine (5mU) and inosine (I) was observed, which can be indicative of the presence of prostate tumors.


Subject(s)
Electrophoresis, Capillary/methods , Nucleosides/blood , Prostatic Neoplasms/diagnosis , Spectrophotometry, Ultraviolet/methods , Biomarkers, Tumor , Humans , Male , Molecular Structure , Nucleosides/chemistry , Nucleosides/metabolism
5.
Electrophoresis ; 36(23): 2968-75, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26250155

ABSTRACT

The development and validation of methodologies for the analysis of biological samples is of outcome importance in order to obtain trustworthy results. This work reports a novel CE-UV method for the assessment of nucleosides, putative tumor biomarkers, in blood serum. The separation of seven nucleosides within c.a. 20 min has been achieved with: BGE 30 mmol/L borate at pH 9.90, 50 mmol/L CTAB, and 10% methanol; V = -10 kV; T = 20°C; and capillary dimensions of 56 cm × 50 µm. The sample plug was concentrated by a modified large volume sample stacking strategy that provided better detectability. Validation showed that the method is suitable for bioanalytical purposes and initial applications in serum samples from healthy subjects are also presented. Finally, statistical methods were applied to verify the effect of characteristics such as age, smoking habits, and alcohol consumption on nucleoside concentrations in blood serum. Univariate statistical analysis tests emphasized the need for age matching, which was confirmed by PCA-DA and PLS-DA. Cancer history in the nearby family may also interfere in nucleoside levels in blood serum, since adenosine concentrations were statistically higher for volunteers who declared having diseased relatives.


Subject(s)
Biomarkers, Tumor/blood , Electrophoresis, Capillary/methods , Nucleosides/blood , Adult , Humans , Limit of Detection , Male , Middle Aged , Multivariate Analysis , Reproducibility of Results , Ultraviolet Rays , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...