Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Virus Genes ; 59(3): 464-472, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37004601

ABSTRACT

There is a growing interest in phages as potential biotechnological tools in human health owing to the antibacterial activity of these viruses. In this study, we characterized a new member (named PhiV_005_BRA/2016) of the recently identified phage species Phietavirus Henu 2. PhiV_005_BRA/2016 was detected through metagenomic analysis of stool samples of individuals with acute gastroenteritis. PhiV_005_BRA/2016 contains double-stranded linear DNA (dsDNA), it has a genome of 43,513 base pairs (bp), with a high identity score (99%) with phage of the genus Phietavirus, species of Phietavirus Henu 2. Life style prediction indicated that PhiV_005_BRA/2016 is a lysogenic phage whose the main host is methicillin-resistant Staphylococcus aureus (MRSA). Indeed, we found PhiV_005_BRA/2016 partially integrated in the genome of distinct MRSA strains. Our findings highlights the importance of large-scale screening of bacteriophages to better understand the emergence of multi-drug resistant bacterial.


Subject(s)
Bacteriophages , Gastroenteritis , Methicillin-Resistant Staphylococcus aureus , Siphoviridae , Staphylococcal Infections , Humans , Virome , Staphylococcal Infections/microbiology
2.
BMC Res Notes ; 15(1): 271, 2022 Aug 03.
Article in English | MEDLINE | ID: mdl-35922804

ABSTRACT

OBJECTIVE: To perform a molecular screening to detect infections by the mayaro virus and possible coinfections with Chikungunya during an outbreak in the state of Tocantins/Brazil in 2017. RESULTS: Of a total 102 samples analyzed in this study, 6 cases were identified with simultaneous infection between mayaro and chikungunya viruses (5.88%). In these 6 samples, the mean Cycle threshold (Ct) for CHIKV was 26.87 (SD ± 10.54) and for MAYV was 29.58 (SD ± 6.34). The mayaro sequences generated showed 95-100% identity to other Brazilian sequences of this virus and with other MAYV isolates obtained from human and arthropods in different regions of the world. The remaining samples were detected with CHIKV monoinfection (41 cases), DENV monoinfection (50 cases) and coinfection between CHIKV/DENV (5 cases). We did not detect MAYV monoinfections.


Subject(s)
Chikungunya Fever , Chikungunya virus , Coinfection , Dengue , Brazil/epidemiology , Chikungunya Fever/diagnosis , Chikungunya Fever/epidemiology , Chikungunya virus/genetics , Coinfection/epidemiology , Dengue/epidemiology , Disease Outbreaks , Humans
3.
Viruses ; 13(12)2021 11 25.
Article in English | MEDLINE | ID: mdl-34960634

ABSTRACT

Metagenomics based on the next-generation sequencing (NGS) technique is a target-independent assay that enables the simultaneous detection and genomic characterization of all viruses present in a sample. There is a limited amount of data about the virome of individuals with gastroenteritis (GI). In this study, the enteric virome of 250 individuals (92% were children under 5 years old) with GI living in the northeastern and northern regions of Brazil was characterized. Fecal samples were subjected to NGS, and the metagenomic analysis of virus-like particles (VLPs) identified 11 viral DNA families and 12 viral RNA families. As expected, the highest percentage of viral sequences detected were those commonly associated with GI, including rotavirus, adenovirus, norovirus (94.8%, 82% and 71.2%, respectively). The most common co-occurrences, in a single individual, were the combinations of rotavirus-adenovirus, rotavirus-norovirus, and norovirus-adenovirus (78%, 69%, and 62%, respectively). In the same way, common fecal-emerging human viruses were also detected, such as parechovirus, bocaporvirus, cosavirus, picobirnavirus, cardiovirus, salivirus, and Aichivirus. In addition, viruses that infect plants, nematodes, fungi, protists, animals, and arthropods could be identified. A large number of unclassified viral contigs were also identified. We show that the metagenomics approach is a powerful and promising tool for the detection and characterization of different viruses in clinical GI samples.


Subject(s)
Gastroenteritis/virology , Metagenomics , Virome/genetics , Viruses/genetics , Acute Disease , Adenoviridae/genetics , Adolescent , Adult , Aged , Bacteriophages/genetics , Brazil/epidemiology , Child , Child, Preschool , Feces/virology , Female , Gastroenteritis/epidemiology , Humans , Male , Middle Aged , Norovirus/genetics , Rotavirus/genetics , Viruses/classification , Viruses/isolation & purification , Young Adult
4.
Viruses ; 13(4)2021 03 31.
Article in English | MEDLINE | ID: mdl-33807396

ABSTRACT

Echoviruses (E) are a diverse group of viruses responsible for various pathological conditions in humans including aseptic meningitis, myocarditis, and acute flaccid paralysis. The detection and identification of echovirus genotypes in clinical samples is challenging due to its high genetic diversity. Here, we report the complete genome sequences of nine echoviruses, obtained by next-generation sequencing of 238 fecal samples from individuals with gastroenteritis in regions of Brazil. Detected viruses were classified into six genotypes: Three E1 sequences (BRA/TO-028, BRA/TO-069 and BRA/TO-236), one E3 (BRA/TO-018), one E11 (BRA/TO-086), one E20 (BRA/TO-016), two E29 (BRA/TO-030 and BRA/TO-193), and one E30 sequence (BRA/TO-032). Phylogenetic analysis indicated that the echoviruses E1 and E29 circulating in Brazil are divergent from strains circulating worldwide. The genotype diversity identified in our study may under-represent the total echovirus diversity in Brazil because of the small sample size and the restricted geographical distribution covered by the survey.


Subject(s)
Enterovirus B, Human/classification , Enterovirus B, Human/genetics , Gastroenteritis/epidemiology , Gastroenteritis/virology , Genetic Variation , Genome, Viral , Genotype , Acute Disease/epidemiology , Brazil/epidemiology , Child, Preschool , Cross-Sectional Studies , Enterovirus B, Human/pathogenicity , Epidemiological Monitoring , Feces/virology , Female , High-Throughput Nucleotide Sequencing , Humans , Infant , Male , Phylogeny , RNA, Viral/genetics , Sequence Analysis, DNA , Whole Genome Sequencing
5.
J Mol Med (Berl) ; 98(12): 1727-1736, 2020 12.
Article in English | MEDLINE | ID: mdl-33067676

ABSTRACT

The world is currently facing a novel viral pandemic (SARS-CoV-2), and large-scale testing is central to decision-making for the design of effective policies and control strategies to minimize its impact on the global population. However, testing for the presence of the virus is a major bottleneck in tracking the spreading of the disease. Given its adaptability regarding the nucleotide sequence of target regions, RT-qPCR is a strong ally to reveal the rapid geographical spreading of novel viruses. We assessed PCR variations in the SARS-CoV-2 diagnosis taking into account public genome sequences and diagnosis kits used by different countries. We analyzed 226 SARS-CoV-2 genome sequences from samples collected by March 22, 2020. Our work utilizes a phylogenetic approach that reveals the early evolution of the virus sequence as it spreads around the globe and informs the design of RT-qPCR primers and probes. The quick expansion of testing capabilities of a country during a pandemic is largely impaired by the availability of adequately trained personnel on RNA isolation and PCR analysis, as well as the availability of hardware (thermocyclers). We propose that rapid capacity development can circumvent these bottlenecks by training medical and non-medical personnel with some laboratory experience, such as biology-related graduate students. Furthermore, the use of thermocyclers available in academic and commercial labs can be promptly calibrated and certified to properly conduct testing during a pandemic. A decentralized, fast-acting training and testing certification pipeline will better prepare us to manage future pandemics.


Subject(s)
COVID-19 Testing/genetics , COVID-19/diagnosis , Pandemics , SARS-CoV-2/isolation & purification , COVID-19/genetics , COVID-19/virology , Humans , RNA, Viral/genetics , RNA, Viral/isolation & purification , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity
6.
J Gen Virol ; 101(12): 1280-1288, 2020 12.
Article in English | MEDLINE | ID: mdl-33044150

ABSTRACT

Human enteric adenovirus species F (HAdV-F) is one of the most common pathogens responsible for acute gastroenteritis worldwide. Brazil is a country with continental dimensions where continuous multiregional surveillance is vital to establish a more complete picture of the epidemiology of HAdV-F. The aim of the current study was to investigate the molecular epidemiology of HAdV-F using full-genome data in rural and low-income urban areas in northern Brazil. This will allow a genetic comparison between Brazilian and global HAdV-F strains. The frequency of HAdV-F infections in patients with gastroenteritis and molecular typing of positive samples within this period was also analysed. A total of 251 stool samples collected between 2010 and 2016 from patients with acute gastroenteritis were screened for HAdV-F using next-generation sequencing techniques. HAdV-F infection was detected in 57.8 % (145/251) of samples. A total of 137 positive samples belonged to HAdV-F41 and 7 to HAdV-F40. HAdV-F40/41 dual infection was found in one sample. Detection rates did not vary significantly according to the year. Single HAdV-F infections were detected in 21.9 % (55/251) of samples and mixed infections in 37.4 % (94/251), with RVA/HAdV-F being the most frequent association (21.5 %; 54/251). Genetic analysis indicated that the HAdV-F strains circulating in Brazil were closely related to worldwide strains, and the existence of some temporal order was not observed. This is the first large-scale HAdV-F study in Brazil in which whole-genome data and DNA sequence analyses were used to characterize HAdV-F strains. Expanding the viral genome database could improve overall genotyping success and assist the National Center for Biotechnology Information (NCBI)/GenBank in standardizing the HAdV genome records by providing a large set of annotated HAdV-F genomes.


Subject(s)
Adenovirus Infections, Human/epidemiology , Adenovirus Infections, Human/virology , Adenoviruses, Human/genetics , Gastroenteritis/virology , Genetic Variation , Adenoviruses, Human/classification , Adenoviruses, Human/isolation & purification , Adolescent , Adult , Aged , Brazil/epidemiology , Child , Child, Preschool , Computational Biology , Cross-Sectional Studies , Feces/virology , Female , Gastroenteritis/epidemiology , Genome, Viral , High-Throughput Nucleotide Sequencing , Humans , Infant , Male , Metagenomics , Middle Aged , Molecular Epidemiology , Molecular Typing , Phylogeny , Recombination, Genetic , Retrospective Studies , Sequence Analysis, DNA , Young Adult
7.
J Oral Microbiol ; 10(1): 1510712, 2018.
Article in English | MEDLINE | ID: mdl-30202506

ABSTRACT

Background: Zika virus (ZIKV) is a single-stranded RNA virus and member of the Flaviviridae family. Recent studies have reported that saliva can be an important alternative to detect ZIKV. Saliva requires less processing than blood greatly simplifying the assay. Loop-mediated Isothermal Amplification (LAMP) is a rapid assay that detects nucleic acids, including ZIKV RNA. Aim: The aim of this study was to evaluate the efficacy of saliva and urine to diagnose ZIKV infection in subjects during the acute phase, through ZIKV RNA detection by LAMP. Method: A total of 131 samples (68 saliva and 63 urine samples) from 69 subjects in the acute phase of ZIKV infection, and confirmed positive for ZIKV by blood analysis through real time-PCR, were collected and analyzed by Reverse Transcriptase Loop-mediated Isothermal Amplification (RT-LAMP). Results: From the 68 saliva samples, 45 (66.2%) were positive for ZIKV with an average time to positivity (Tp) of 13.5 min, and from the 63 urine samples, 25 (39.7%) were positive with the average Tp of 15.8 min. Saliva detected more samples (p = 0.0042) and had faster Tp (p = 0.0176) as compared with urine. Conclusion: Saliva proved to be a feasible alternative to diagnose ZIKV infection during the acute phase by LAMP.

8.
Virus Genes ; 54(3): 470-473, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29594920

ABSTRACT

We report here the complete genome sequence of a bipartite virus, herein denoted WLPRV/human/BRA/TO-34/201, from a sample collected in 2015 from a two-year-old child in Brazil presenting acute gastroenteritis. The virus has 98-99% identity (segments 2 and 1, respectively) with the Wuhan large pig roundworm virus (unclassified RNA virus) that was recently discovered in the stomachs of pigs from China. This is the first report of a Wuhan large pig roundworm virus detected in human specimens, and the second genome described worldwide. However, the generation of more sequence data and further functional studies are required to fully understand the ecology, epidemiology, and evolution of this new unclassified virus.


Subject(s)
Gastroenteritis/virology , Genome, Viral , RNA Viruses/genetics , Animals , Ascaris/virology , Brazil , Child, Preschool , Feces/virology , Female , Humans , Phylogeny , RNA Viruses/classification , RNA Viruses/isolation & purification , Whole Genome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL
...