Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Neuroimmunomodulation ; 31(1): 114-124, 2024.
Article in English | MEDLINE | ID: mdl-38631323

ABSTRACT

INTRODUCTION: Emerging studies highlight the telomere system as an aging mechanism underlying the association between exposure to psychological trauma and the development of a wide range of physical and mental disorders, including major depressive disorder (MDD). Here, we investigated associations of circulating levels of the steroid hormone dehydroepiandrosterone (DHEA) with immune cell telomere length (TL) in the context of lifetime trauma exposure and MDD. METHODS: Lifetime traumatic events (trauma load) were assessed using the Essener Trauma Inventory in n = 22 postmenopausal female inpatients with MDD and n = 22 non-depressed controls. All women completed the Beck's Depression Inventory II to assess the severity of current depressive symptoms. DHEA concentration in serum was measured by immunoassay, and TL was quantified in kilobase units using quantitative fluorescent in situ hybridization in total peripheral blood mononuclear cells (PBMC) and in selected T-cell subpopulations isolated by FACS separation. RESULTS: Higher trauma load was significantly associated with lower DHEA concentration, which in turn was linked to more depression-related fatigue. Furthermore, DHEA concentration was positively and significantly associated with TL in memory CD4+ T cells as well as in naïve and memory CD8+ T cells, but not in naïve CD4+ T cells and total PBMC. Mediational analysis suggested that DHEA concentration is a mediator in the relationship between trauma load and memory CD8+ T-cell TL. CONCLUSION: The current findings suggest a potential role of DHEA as a biological resilience factor that may exert beneficial effects on telomere integrity, especially in conditions related to distress.


Subject(s)
Dehydroepiandrosterone , Depressive Disorder, Major , Psychological Trauma , Telomere , Humans , Female , Dehydroepiandrosterone/blood , Middle Aged , Depressive Disorder, Major/blood , Aged , Psychological Trauma/blood
2.
Neurobiol Stress ; 27: 100576, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37810429

ABSTRACT

Background: Childhood maltreatment profoundly alters trajectories of brain development, promoting markedly increased long-term health risks and impaired intellectual development. However, the immediate impact of maltreatment on brain development in children and the extent to which altered global brain volume contributes to intellectual development in children with maltreatment experience is currently unknown. We here utilized MRI data obtained from children within 6 months after the exposure to maltreatment to assess the association of maltreatment severity with global brain volume changes. We further assessed the association between maltreatment severity and intellectual development and tested for the mediating effect of brain volume on this association. Method: We used structural MRI (3T) in a sample of 49 children aged 3-5 years with maltreatment exposure, i.e. emotional and physical abuse and/or neglect within 6 months, to characterize intracranial and tissue-specific volumes. Maltreatment severity was coded using the Maternal Interview for the Classification of Maltreatment. IQ was tested at study entry and after one year using the Snijders Oomen Nonverbal Test. Results: Higher maltreatment severity was significantly correlated with smaller intracranial volume (r = -.393, p = .008), which was mainly driven by lower total brain volume (r = -.393, p = .008), which in turn was primarily due to smaller gray matter volume (r = -.454, p = .002). Furthermore, smaller gray matter volume was associated with lower IQ at study entry (r = -.548, p < .001) and predicted IQ one year later (r = -.493, p = .004.). The observed associations were independent of potential confounding variables, including height, socioeconomic status, age and sex. Importance: We provide evidence that greater maltreatment severity in early childhood is related to smaller brain size at a very young age with significant consequences for intellectual ability, likely setting a path for far-reaching long-term disadvantages. Insights into the molecular and neural processes that underlie the impact of maltreatment on brain structure and function are urgently needed to derive mechanism-driven targets for early intervention.

3.
Psychoneuroendocrinology ; 155: 106325, 2023 09.
Article in English | MEDLINE | ID: mdl-37385089

ABSTRACT

NUCB2/nesfatin-1 is an anorexigenic peptide hormone first known for its effects on energy homeostasis. More recently, a growing evidence suggests a role of NUCB2/nesfatin-1 in emotion regulation, particularly in the modulation of anxiety, depression and emotional stress response. Since stress-related mood disorders are often comorbid with obesity, we investigated the effect of acute psychosocial stress on circulating NUCB2/nesfatin-1 in obese women and normal-weight controls and its association with symptoms of anxiety. Forty women, 20 obese and 20 normal-weight controls, (aged between 27 and 46 years) were exposed to the Trier Social Stress Test (TSST). We assessed changes of plasma NUCB2/nesfatin-1, salivary cortisol, heart rate and subjective emotional state. Symptoms of anxiety (GAD-7), depressiveness (PHQ-9), perceived stress (PSQ-20), disordered eating (EDE-Q, EDI-2) and health-related quality of life (SF-8) were measured psychometrically. Obese women were further subdivided in a high and low anxiety group. Women with obesity displayed higher psychopathology compared to normal-weight controls. The TSST induced a biological and psychological stress response in both groups (p < 0.001). In normal-weight controls NUCB2/nesfatin-1 increased in response to stress (p = 0.011) and decreased during recovery (p < 0.050), while in obese women only the decrease during recovery was significant (p = 0.002). Obese women with high anxiety displayed higher NUCB2/nesfatin-1 levels than those in the low anxiety group (TSST: +34 %, p = 0.008; control condition: +52 %, p = 0.013). Our data substantiate the involvement of NUCB2/nesfatin-1 in the modulation of stress and anxiety. It remains unclear whether the attenuated stress response in obese subjects is due to metabolic changes or mental comorbidity.


Subject(s)
Calcium-Binding Proteins , DNA-Binding Proteins , Adult , Female , Humans , Middle Aged , Anxiety/psychology , Nucleobindins , Obesity/psychology , Psychophysiologic Disorders , Quality of Life
4.
Psychoneuroendocrinology ; 153: 106120, 2023 07.
Article in English | MEDLINE | ID: mdl-37104965

ABSTRACT

Exposure to various forms of stress has been associated with shorter telomere length (TL). However, the molecular underpinnings of this effect are poorly understood. Based on an understanding of the key role of the reverse transcriptase enzyme telomerase in regulating TL, and building upon our previous work in developing and validating a biomarker of the capacity of cells to express telomerase (maximal telomerase activity capacity (mTAC)), we examine here the hypotheses that mTAC is positively associated with TL and that the effect of stress on TL is mediated by individual differences in mTAC. In a proof-of-principle study of 28 healthy women and men we quantified the cortisol response to a standardized stress challenge, the Trier Social Stress Test (TSST), and we concurrently assessed peripheral blood mononuclear cell (PBMC) mTAC and TL. Our results indicated that higher mTAC levels were associated with longer TL (r = 0.50, p = .01). Moreover, mediational analysis suggested that the effect of the cortisol stress response on TL was mediated by mTAC (completely standardized ß = -0.17, bootstrap CI95 %: -0.44 to -0.01). Thus, our findings support the premise that individual differences in the capacity of cells to up-regulate telomerase may represent a key mediator in the link between stress and TL.


Subject(s)
Telomerase , Male , Humans , Female , Telomerase/metabolism , Leukocytes, Mononuclear/metabolism , Hydrocortisone , Telomere/metabolism
5.
Brain Sci ; 12(10)2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36291248

ABSTRACT

The attachment representation (AR) of individuals affects emotional and cognitive information processes and is considered an important modulating factor of neuroendocrine stress responses. The neuropeptide oxytocin is studied as one biomolecular component underpinning this modulation. A validated procedure used in attachment-related research is the Adult Attachment Projective Picture System (AAP). To date, only a limited number of studies investigated oxytocin and neuroendocrine reactivity in the context of an attachment-related stimulus similar to the APP. In this pilot study, N = 26 men of recent fatherhood were exposed to the AAP to classify AR and to investigate salivary changes in oxytocin, cortisol and dehydroepiandrosterone (DHEA) after AAP stimulation. We observed increased oxytocin levels in response to AAP exposure, and this increase was more pronounced in fathers with unresolved/disorganized AR. No significant changes in cortisol and DHEA concentrations were observed in response to AAP administration. Interestingly, differences in basal cortisol levels (before the AAP) also depended on AR classification. Here, the group of men with unresolved/disorganized AR showed higher levels of cortisol compared to fathers with organized AR. To conclude, the finding of increased salivary oxytocin levels in response to the AAP further indicates its validity as an instrument to stimulate the attachment system.

6.
EPMA J ; 13(3): 383-395, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36061827

ABSTRACT

Depression and suicidal behavior are interrelated, stress-associated mental health conditions, each lacking biological verifiability. Concepts of predictive, preventive, and personalized medicine (3PM) are almost completely missing for both conditions but are of utmost importance. Prior research reported altered levels of the stress hormone cortisol in the scalp hair of depressed individuals, however, data on hair cortisol levels (HCL) for suicide completers (SC) are missing. Here, we aimed to identify differences in HCL between subject with depression (n = 20), SC (n = 45) and mentally stable control subjects (n = 12) to establish the usage of HCL as a new target for 3PM. HCL was measured in extracts of pulverized hair (1-cm and 3-cm hair segments) using ELISA. In 3-cm hair segments, an average increase in HCL for depressed patients (1.66 times higher; p = .011) and SC (5.46 times higher; p = 1.65 × 10-5) compared to that for controls was observed. Furthermore, the average HCL in SC was significantly increased compared to that in the depressed group (3.28 times higher; p = 1.4 × 10-5). A significant correlation between HCL in the 1-cm and the 3-cm hair segments, as well as a significant association between the severity of depressive symptoms and HCL (3-cm segment) was found. To conclude, findings of increased HCL in subjects with depression compared to that in controls were replicated and an additional increase in HCL was seen in SC in comparison to patients with depression. The usage of HCL for creating effective patient stratification and predictive approach followed by the targeted prevention and personalization of medical services needs to be validated in follow-up studies.

7.
Neurobiol Stress ; 15: 100394, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34621920

ABSTRACT

BACKGROUND: Studies reporting accelerated ageing in children with affective disorders or maltreatment exposure have relied on algorithms for estimating epigenetic age derived from adult samples. These algorithms have limited validity for epigenetic age estimation during early development. We here use a pediatric buccal epigenetic (PedBE) clock to predict DNA methylation-based ageing deviation in children with and without internalizing disorder and assess the moderating effect of maltreatment exposure. We further conduct a gene set enrichment analysis to assess the contribution of glucocorticoid signaling to PedBE clock-based results. METHOD: DNA was isolated from saliva of 158 children [73 girls, 85 boys; mean age (SD) = 4.25 (0.8) years] including children with internalizing disorder and maltreatment exposure. Epigenetic age was estimated based on DNA methylation across 94 CpGs of the PedBE clock. Residuals of epigenetic age regressed against chronological age were contrasted between children with and without internalizing disorder. Maltreatment was coded in 3 severity levels and entered in a moderation model. Genome-wide dexamethasone-responsive CpGs were derived from an independent sample and enrichment of these CpGs within the PedBE clock was identified. RESULTS: Children with internalizing disorder exhibited significant acceleration of epigenetic ageing as compared to children without internalizing disorder (F1,147 = 6.67, p = .011). This association was significantly moderated by maltreatment severity (b = 0.49, 95% CI [0.073, 0.909], t = 2.322, p = .022). Children with internalizing disorder who had experienced maltreatment exhibited ageing acceleration relative to children with no internalizing disorder (1-2 categories: b = 0.50, 95% CI [0.170, 0.821], t = 3.008, p = .003; 3 or more categories: b = 0.99, 95% CI [0.380, 1.593], t = 3.215, p = .002). Children with internalizing disorder who were not exposed to maltreatment did not show epigenetic ageing acceleration. There was significant enrichment of dexamethasone-responsive CpGs within the PedBE clock (OR = 4.36, p = 1.65*10-6). Among the 94 CpGs of the PedBE clock, 18 (19%) were responsive to dexamethasone. CONCLUSION: Using the novel PedBE clock, we show that internalizing disorder is associated with accelerated epigenetic ageing in early childhood. This association is moderated by maltreatment severity and may, in part, be driven by glucocorticoids. Identifying developmental drivers of accelerated epigenetic ageing after maltreatment will be critical to devise early targeted interventions.

8.
Neurobiol Stress ; 15: 100336, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34095363

ABSTRACT

Childhood maltreatment (CM) is an established major risk factor for a number of negative health outcomes later in life. While epigenetic mechanisms, such as DNA methylation (DNAm), have been proposed as a means of embedding this environmental risk factor, little is known about its timing and trajectory, especially in very young children. It is also not clear whether additional environmental adversities, often experienced by these children, converge on similar DNAm changes. Here, we calculated a cumulative adversity score, which additionally to CM includes socioeconomic status (SES), other life events, parental psychopathology and epigenetic biomarkers of prenatal smoking and alcohol consumption. We investigated the effects of CM alone as well as the adversity score on longitudinal DNAm trajectories in the Berlin Longitudinal Child Study. This is a cohort of 173 children aged 3-5 years at baseline of whom 86 were exposed to CM. These children were followed-up for 2 years with extensive psychometric and biological assessments as well as saliva collection at 5 time points providing genome-wide DNAm levels. Overall, only a few DNAm patterns were stable over this timeframe, but less than 10 DNAm regions showed significant changes. At baseline, neither CM nor the adversity score associated with DNAm changes. However, in 6 differentially methylated regions (DMRs), CM and the adversity score significantly moderated DNAm trajectories over time. A number of these DMRs have previously been associated with adverse prenatal exposures. In our study, children exposed to CM also presented with epigenetic signatures indicative of increased prenatal exposure to tobacco and alcohol, as compared to non-CM exposed children. These epigenetic signatures of prenatal exposure strongly correlate with DNAm regions associated with CM and the adversity score. Finally, weighted correlation network analysis revealed a module of CpGs exclusively associated with CM. While our study identifies DNAm loci specifically associated with CM, especially within long non-coding RNAs, the majority of associations were found with the adversity score with convergent association with indicators of adverse prenatal exposures. This study highlights the importance of mapping not only of the epigenome but also the exposome and extending the observational timeframe to well before birth.

9.
mSphere ; 6(3)2021 05 05.
Article in English | MEDLINE | ID: mdl-33952660

ABSTRACT

Mycobacterium tuberculosis infections claim more than a million lives each year, and better treatments or vaccines are required. A crucial pathogenicity factor is translocation from phagolysosomes to the cytosol upon phagocytosis by macrophages. Translocation from the phagolysosome to the cytosol is an ESX-1-dependent process, as previously shown in vitro Here, we show that in vivo, mycobacteria also translocate to the cytosol but mainly when host immunity is compromised. We observed only low numbers of cytosolic bacilli in mice, armadillos, zebrafish, and patient material infected with M. tuberculosis, M. marinum, or M. leprae In contrast, when innate or adaptive immunity was compromised, as in severe combined immunodeficiency (SCID) or interleukin-1 receptor 1 (IL-1R1)-deficient mice, significant numbers of cytosolic M. tuberculosis bacilli were detected in the lungs of infected mice. Taken together, in vivo, translocation to the cytosol of M. tuberculosis is controlled by adaptive immune responses as well as IL-1R1-mediated signals.IMPORTANCE For decades, Mycobacterium tuberculosis has been one of the deadliest pathogens known. Despite infecting approximately one-third of the human population, no effective treatment or vaccine is available. A crucial pathogenicity factor is subcellular localization, as M. tuberculosis can translocate from phagolysosome to the cytosol in macrophages. The situation in vivo is more complicated. In this study, we establish that high-level cytosolic escape of mycobacteria can indeed occur in vivo but mainly when host resistance is compromised. The IL-1 pathway is crucial for the control of the number of cytosolic mycobacteria. The establishment that immune signals result in the clearance of cells containing cytosolic mycobacteria connects two important fields, cell biology and immunology, which is vital for the understanding of the pathology of M. tuberculosis.


Subject(s)
Cytosol/microbiology , Mycobacterium/immunology , Mycobacterium/pathogenicity , Phagosomes/microbiology , Receptors, Interleukin-1/genetics , Receptors, Interleukin-1/immunology , Signal Transduction/immunology , Animals , Armadillos/microbiology , Bacterial Translocation , Cytosol/immunology , Female , Humans , Leprosy/microbiology , Male , Mice , Mice, Inbred BALB C , Mice, SCID , Mycobacterium/classification , Phagosomes/immunology , Skin/microbiology , Skin/pathology , THP-1 Cells , Zebrafish
10.
Cells ; 10(4)2021 04 17.
Article in English | MEDLINE | ID: mdl-33920604

ABSTRACT

Emerging data suggest that obesity is a major risk factor for the progression of major complications such as acute respiratory distress syndrome (ARDS), cytokine storm and coagulopathy in COVID-19. Understanding the mechanisms underlying the link between obesity and disease severity as a result of SARS-CoV-2 infection is crucial for the development of new therapeutic interventions and preventive measures in this high-risk group. We propose that multiple features of obesity contribute to the prevalence of severe COVID-19 and complications. First, viral entry can be facilitated by the upregulation of viral entry receptors, like angiotensin-converting enzyme 2 (ACE2), among others. Second, obesity-induced chronic inflammation and disruptions of insulin and leptin signaling can result in impaired viral clearance and a disproportionate or hyper-inflammatory response, which together with elevated ferritin levels can be a direct cause for ARDS and cytokine storm. Third, the negative consequences of obesity on blood coagulation can contribute to the progression of thrombus formation and hemorrhage. In this review we first summarize clinical findings on the relationship between obesity and COVID-19 disease severity and then further discuss potential mechanisms that could explain the risk for major complications in patients suffering from obesity.


Subject(s)
COVID-19/complications , Obesity/complications , Animals , COVID-19/immunology , COVID-19/pathology , Chronic Disease , Humans , Immunity , Inflammation/complications , Inflammation/immunology , Inflammation/pathology , Insulin Resistance , Obesity/immunology , Obesity/pathology , Risk Factors , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , SARS-CoV-2/physiology , Severity of Illness Index , Unfolded Protein Response , Virus Internalization
11.
Dev Psychopathol ; 32(5): 1725-1731, 2020 12.
Article in English | MEDLINE | ID: mdl-33427162

ABSTRACT

Exposure to child maltreatment increases the risk for psychiatric and physical diseases. Inflammation has been proposed as a mechanism through which early adverse experiences become biologically embedded. However, most studies providing evidence for the link between early adverse exposures and inflammation have been retrospective or cross-sectional in design, or did not assess inflammation immediately after maltreatment in young children. In the present study we investigated the association between childhood maltreatment and salivary C-reactive protein (CRP) concentrations in a population of N = 173 children, 3-5 years of age, who were recruited in the immediate aftermath of maltreatment and followed-up longitudinally every 6 months over a period of 2 years. We found that the association between maltreatment and CRP concentrations was significantly moderated by child sex, such that in girls, CRP concentrations were higher in the maltreated compared to the control group, and this difference was stable across the 2-year follow-up-period, while in boys, there was no association between maltreatment and CRP. Our findings suggest that the effect of maltreatment on inflammation may already emerge right after exposure at a very young age in girls and manifest over time. Our study provides important evidence for the development of personalized, early interventions strategies targeting the early-life period.


Subject(s)
Child Abuse , C-Reactive Protein , Child , Child, Preschool , Cross-Sectional Studies , Female , Humans , Infant , Inflammation , Male , Retrospective Studies
12.
Psychoneuroendocrinology ; 109: 104388, 2019 11.
Article in English | MEDLINE | ID: mdl-31398588

ABSTRACT

BACKGROUND: Chronotype influences several physiological systems, including the immune system and the hypothalamus-pituitary-adrenal (HPA)-axis. Previous research has shown that evening chronotype is associated with adverse metabolic health outcomes and obesity. However, the exact mechanisms underlying the observed differences in metabolic function between "morning" and "evening" types remain to be explored. OBJECTIVE: To investigate the relationship of chronotype with inflammatory and neuroendocrine stress markers and to explore their mediating and moderating roles in the association between chronotype and body mass index (BMI). METHODS: Twenty-eight healthy young adults (50% women), mean age 23.8 ±â€¯3.3 (SD) years, underwent a standardized laboratory stress test (Trier Social Stress Test, TSST). Concentrations of plasma C-reactive protein (CRP) at baseline and of salivary cortisol before and after the onset of the stressor were analyzed. Heart rate was measured continuously. Chronotype was assessed with the Morningness-Eveningness Questionnaire (MEQ). RESULTS: Lower MEQ scores (i.e. evening tendency) were associated with higher BMI (r = -.40, p < .05), elevated CRP concentrations (r = -.42, p < .05) and higher cortisol responses to acute stress (r = -.53, p < .01). The relationship between MEQ score and BMI was mediated by CRP concentrations (b = -0.03, CI 95%: -0.08 to -0.007, p < .05). In addition, we observed a moderating effect of the cortisol stress response on this mediated relationship (b = 0.005, CI 95%: 0.0002 to 0.01, p < .05), such that the mediated relationship was stronger in individuals with a higher cortisol response. CONCLUSION: Enhanced pro-inflammatory state and a higher cortisol response to stress may underlie the effect of evening chronotype on obesity risk and adverse metabolic health outcomes.


Subject(s)
Circadian Rhythm/physiology , Sleep/physiology , Stress, Psychological/metabolism , Adult , Body Mass Index , C-Reactive Protein/metabolism , C-Reactive Protein/physiology , Female , Humans , Hydrocortisone/metabolism , Male , Obesity/metabolism , Risk Factors , Saliva/chemistry , Surveys and Questionnaires , Young Adult
13.
Psychoneuroendocrinology ; 101: 87-100, 2019 03.
Article in English | MEDLINE | ID: mdl-30445409

ABSTRACT

Chronic stress is associated with the accelerated aging of the immune system and represents a potent risk factor for the development and progression of a wide range of physical and mental disorders. The elucidation of molecular pathways and mechanisms underlying the link between stress and cellular aging is an area of considerable interest and investigation. In this context, telomere biology has emerged as a particularly attractive candidate mechanism. Several studies have linked immune cell telomere length with stress-related conditions and states, and also with several physical and mental disorders. Because the cellular reverse transcriptase enzyme telomerase is the primary regulator of telomere length (by adding telomeric DNA to telomeres and thereby attenuating telomere shortening), the understanding of its regulation and regulatory functions constitutes a prime target for developing strategies to prevent, attenuate or reverse the adverse consequences of immune system aging (immunosenescence). In this review we provide an overview of the mechanistic pathways linking telomerase with stress and cellular aging, with an emphasis on the immune system. We summarize and synthesize the current state of the literature on immune cell telomerase in different stress- and aging-related disease states and provide recommendations for future research directions.


Subject(s)
Immunosenescence/physiology , Stress, Psychological/immunology , Telomerase/metabolism , Age Factors , Cellular Senescence/genetics , Humans , Stress, Psychological/physiopathology , Telomerase/physiology , Telomere/metabolism , Telomere Shortening
14.
Front Psychiatry ; 9: 610, 2018.
Article in English | MEDLINE | ID: mdl-30538644

ABSTRACT

Background: Major depressive disorder (MDD) is a complex psychiatric condition with different subtypes and etiologies. Exposure to adverse childhood experiences (ACE) is an important risk factor for the development of MDD later in life. Evidence suggests that pro-inflammatory processes may convey this risk as both MDD and ACE have been related to increased levels of inflammation. In the present study, we aimed to disentangle the effects of MDD and ACE on inflammation levels. Methods: Markers of inflammation (plasma interleukin(IL)-6 and high sensitive C-reactive protein (hsCRP) concentrations, white blood cell (WBC) count and a composite inflammation score (CIS) combining all three) were assessed in 23 MDD patients with ACE, 23 MDD patients without ACE, 21 healthy participants with ACE, and 21 healthy participants without ACE (mean age: 35 ± 11 (SD) years). None of the patients and participants was taking psychotropic medication. ACE was assessed with the Early Trauma Inventory (ETI) and was defined as moderate to severe exposure to sexual or physical abuse. Results: Group differences in the different inflammatory measures were observed. MDD patients with ACE showed significantly higher IL-6 concentrations (p = 0.018), higher WBC counts (p = 0.003) and increased general inflammation levels as indicated by the CIS (p = 0.003) compared to healthy controls. In contrast, MDD patients without ACE displayed similar inflammation levels to the control group (p = 0.93). Conclusion: We observed elevated inflammation in MDD patients with a history of ACE, which could indicate a subtype of "inflammatory depression". Accordingly, MDD patients with ACE might potentially benefit from anti-inflammatory therapies.

15.
Article in English | MEDLINE | ID: mdl-29335365

ABSTRACT

The goal of this study was to develop and validate a measure of maximal telomerase activity capacity (mTAC) for use in human studies of telomere biology, and to determine its association with measures of stress and stress responsivity. The study was conducted in a population of 28 healthy young women and men who were assessed serially across two separate days, at multiple time points, and in response to a standardized laboratory stressor. Venous blood was collected at each of these multiple assessments, and an in vitro mitogen challenge (phytohaemagglutinin supplemented with interleukin-2) was used to stimulate telomerase activity in leucocytes. After first establishing the optimal post-stimulation time course to characterize mTAC, we determined the within-subject stability and the between-subject variability of mTAC. The major findings of our study are as follows: (i) the optimal time point to quantify human leucocyte mTAC appears to be at 72 h after mitogen stimulation; (ii) mTAC exhibits substantial within-subject stability (correlations were in the range of r 0.68-0.82) and between-subject variability, with a high intra-class coefficient (0.70), indicating greater between-subject relative to within-subject variability; (iii) mTAC is not influenced by situational factors including time of day, cortisol, acute stress exposure and immune cell distribution in the pre-stimulation blood sample; and (iv) a significant proportion of the between-subject variability in mTAC is associated with measures of stress and stress responsivity (mTAC is lower in subjects reporting higher levels of perceived (chronic) stress and exhibiting higher psychophysiological stress reactivity). Based collectively on these findings, it appears that mTAC, as proposed and operationalized, empirically meets the key criteria to represent a potentially useful individual difference measure of telomerase activity capacity of human leucocytes.This article is part of the theme issue 'Understanding diversity in telomere dynamics'.


Subject(s)
Leukocytes/drug effects , Stress, Psychological , Telomerase/metabolism , Adrenocorticotropic Hormone/blood , Adult , Biological Variation, Population , Body Mass Index , Female , Humans , Hydrocortisone/blood , Male , Mitogens/pharmacology , Phytohemagglutinins/pharmacology , Saliva/drug effects , Surveys and Questionnaires , Telomere/metabolism
16.
Article in English | MEDLINE | ID: mdl-29335381

ABSTRACT

Research on mechanisms underlying fetal programming of health and disease risk has focused primarily on processes that are specific to cell types, organs or phenotypes of interest. However, the observation that developmental conditions concomitantly influence a diverse set of phenotypes, the majority of which are implicated in age-related disorders, raises the possibility that such developmental conditions may additionally exert effects via a common underlying mechanism that involves cellular/molecular ageing-related processes. In this context, we submit that telomere biology represents a process of particular interest in humans because, firstly, this system represents among the most salient antecedent cellular phenotypes for common age-related disorders; secondly, its initial (newborn) setting appears to be particularly important for its long-term effects; and thirdly, its initial setting appears to be plastic and under developmental regulation. We propose that the effects of suboptimal intrauterine conditions on the initial setting of telomere length and telomerase expression/activity capacity may be mediated by the programming actions of stress-related maternal-placental-fetal oxidative, immune, endocrine and metabolic pathways in a manner that may ultimately accelerate cellular dysfunction, ageing and disease susceptibility over the lifespan. This perspectives paper provides an overview of each of the elements underlying this hypothesis, with an emphasis on recent developments, findings and future directions.This article is part of the theme issue 'Understanding diversity in telomere dynamics'.


Subject(s)
Fetal Development , Telomerase/metabolism , Telomere Homeostasis , Telomere/metabolism , Age Factors , Animals , Disease Susceptibility , Female , Humans , Infant, Newborn , Oxidative Stress , Placenta/metabolism , Pregnancy , Risk Factors , Stress, Psychological
17.
Nature ; 530(7590): 340-3, 2016 Feb 18.
Article in English | MEDLINE | ID: mdl-26863187

ABSTRACT

Mammalian Wnt proteins are believed to act as short-range signals, yet have not been previously visualized in vivo. Self-renewal, proliferation and differentiation are coordinated along a putative Wnt gradient in the intestinal crypt. Wnt3 is produced specifically by Paneth cells. Here we have generated an epitope-tagged, functional Wnt3 knock-in allele. Wnt3 covers basolateral membranes of neighbouring stem cells. In intestinal organoids, Wnt3-transfer involves direct contact between Paneth cells and stem cells. Plasma membrane localization requires surface expression of Frizzled receptors, which in turn is regulated by the transmembrane E3 ligases Rnf43/Znrf3 and their antagonists Lgr4-5/R-spondin. By manipulating Wnt3 secretion and by arresting stem-cell proliferation, we demonstrate that Wnt3 mainly travels away from its source in a cell-bound manner through cell division, and not through diffusion. We conclude that stem-cell membranes constitute a reservoir for Wnt proteins, while Frizzled receptor turnover and 'plasma membrane dilution' through cell division shape the epithelial Wnt3 gradient.


Subject(s)
Cell Membrane/metabolism , Intestinal Mucosa/cytology , Stem Cell Niche , Stem Cells/cytology , Stem Cells/metabolism , Wnt Signaling Pathway , Wnt3 Protein/metabolism , Alleles , Animals , Cell Adhesion , Cell Division , Diffusion , Female , Frizzled Receptors/metabolism , Gene Knock-In Techniques , Intercellular Signaling Peptides and Proteins/metabolism , Male , Mice , Organoids/cytology , Organoids/metabolism , Paneth Cells/cytology , Paneth Cells/metabolism , Receptors, G-Protein-Coupled/metabolism , Ubiquitin-Protein Ligases/metabolism , Wnt3 Protein/genetics
18.
Front Immunol ; 6: 223, 2015.
Article in English | MEDLINE | ID: mdl-26029209

ABSTRACT

Chronic non-communicable diseases (NCDs) are the leading causes of work absence, disability, and mortality worldwide. Most of these diseases are associated with low-grade inflammation. Here, we hypothesize that stresses (defined as homeostatic disturbances) can induce low-grade inflammation by increasing the availability of water, sodium, and energy-rich substances to meet the increased metabolic demand induced by the stressor. One way of triggering low-grade inflammation is by increasing intestinal barrier permeability through activation of various components of the stress system. Although beneficial to meet the demands necessary during stress, increased intestinal barrier permeability also raises the possibility of the translocation of bacteria and their toxins across the intestinal lumen into the blood circulation. In combination with modern life-style factors, the increase in bacteria/bacterial toxin translocation arising from a more permeable intestinal wall causes a low-grade inflammatory state. We support this hypothesis with numerous studies finding associations with NCDs and markers of endotoxemia, suggesting that this process plays a pivotal and perhaps even a causal role in the development of low-grade inflammation and its related diseases.

19.
J Health Popul Nutr ; 33: 24, 2015 Nov 24.
Article in English | MEDLINE | ID: mdl-26825414

ABSTRACT

Gluten-containing cereals are a main food staple present in the daily human diet, including wheat, barley, and rye. Gluten intake is associated with the development of celiac disease (CD) and related disorders such as diabetes mellitus type I, depression, and schizophrenia. However, until now, there is no consent about the possible deleterious effects of gluten intake because of often failing symptoms even in persons with proven CD. Asymptomatic CD (ACD) is present in the majority of affected patients and is characterized by the absence of classical gluten-intolerance signs, such as diarrhea, bloating, and abdominal pain. Nevertheless, these individuals very often develop diseases that can be related with gluten intake. Gluten can be degraded into several morphine-like substances, named gluten exorphins. These compounds have proven opioid effects and could mask the deleterious effects of gluten protein on gastrointestinal lining and function. Here we describe a putative mechanism, explaining how gluten could "mask" its own toxicity by exorphins that are produced through gluten protein digestion.


Subject(s)
Asymptomatic Diseases , Celiac Disease/physiopathology , Edible Grain/adverse effects , Glutens/adverse effects , Models, Biological , Opioid Peptides/adverse effects , Peptides/adverse effects , Animals , Celiac Disease/immunology , Celiac Disease/metabolism , Digestion , Edible Grain/metabolism , Gastrointestinal Tract/immunology , Gastrointestinal Tract/metabolism , Gastrointestinal Tract/physiopathology , Gastrointestinal Transit , Glutens/metabolism , Humans , Opioid Peptides/metabolism , Peptides/metabolism , Proteolysis , Severity of Illness Index
20.
Microb Cell Fact ; 13: 162, 2014 Nov 25.
Article in English | MEDLINE | ID: mdl-25421093

ABSTRACT

BACKGROUND: The Autotransporter pathway, ubiquitous in Gram-negative bacteria, allows the efficient secretion of large passenger proteins via a relatively simple mechanism. Capitalizing on its crystal structure, we have engineered the Escherichia coli autotransporter Hemoglobin protease (Hbp) into a versatile platform for secretion and surface display of multiple heterologous proteins in one carrier molecule. RESULTS: As proof-of-concept, we demonstrate efficient secretion and high-density display of the sizeable Mycobacterium tuberculosis antigens ESAT6, Ag85B and Rv2660c in E. coli simultaneously. Furthermore, we show stable multivalent display of these antigens in an attenuated Salmonella Typhimurium strain upon chromosomal integration. To emphasize the versatility of the Hbp platform, we also demonstrate efficient expression of multiple sizeable antigenic fragments from Chlamydia trachomatis and the influenza A virus at the Salmonella cell surface. CONCLUSIONS: The successful efficient cell surface display of multiple antigens from various pathogenic organisms highlights the potential of Hbp as a universal platform for the development of multivalent recombinant bacterial vector vaccines.


Subject(s)
Antigens, Bacterial , Antigens, Viral , Bacterial Secretion Systems , Bacterial Vaccines , Endopeptidases , Escherichia coli , Influenza Vaccines , Salmonella typhimurium , Antigens, Bacterial/genetics , Antigens, Bacterial/metabolism , Antigens, Viral/genetics , Antigens, Viral/metabolism , Bacterial Vaccines/genetics , Bacterial Vaccines/metabolism , Chlamydia trachomatis/genetics , Endopeptidases/genetics , Endopeptidases/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Influenza A virus/genetics , Influenza Vaccines/genetics , Influenza Vaccines/metabolism , Mycobacterium tuberculosis/genetics , Salmonella typhimurium/genetics , Salmonella typhimurium/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL