Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 12(21)2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37960077

ABSTRACT

The tomato crop is very sensitive to stress conditions. A water deficit is defined as when precipitation is less than the evapotranspiration (ETc) of the crop in a given period, and in this scenario of climate change, it is identified as responsible for global productivity losses. The use of potential technologies for better irrigation management, such as electromagnetically treated water, remains controversial. Thus, the objective of the present work was to investigate the effects of very low-frequency electromagnetic resonance field treatment on water for tomato crops submitted to different irrigation rates. For this, an experiment was carried out under controlled conditions with different types of water: electromagnetically treated water (WTVLF) and untreated water (UNW), as well as four water replacement rates: 40, 60, 80, and 100% ETc. The electromagnetic treatment of the water was carried out using the commercial equipment AQUA4D®. The experiment was carried out in pots with five replications per treatment. Lower activity of SOD, POD, CAT, and APX enzymes was observed in plants irrigated with water treated with very low-frequency electromagnetic resonance fields (WTVLF), indicating less oxidative stress caused by water deficit. Water deficit reduced chlorophyll content, but the effects were less harmful with WTVLF water. The water deficit resulted in less accumulation of dry matter and less productivity in a linear relationship. However, plants irrigated with WTVLF showed increments of about 20% in dry matter accumulation and 20% in fruit production concerning plants irrigated with untreated water, independent of the irrigation rates. We can conclude that irrigation with WTVLF can be a solution to reduce the damage caused by water deficits and increase the productivity of tomato crops.

2.
J Sci Food Agric ; 100(5): 1990-1997, 2020 Mar 30.
Article in English | MEDLINE | ID: mdl-31849063

ABSTRACT

BACKGROUND: Selenium (Se) is an essential element for humans and animals. Rice is one of the most commonly consumed cereals in the world, so the agronomic biofortification of cereals with Se may be a good strategy to increase the levels of daily intake of Se by the population. This study evaluated the agronomic biofortification of rice genotypes with Se and its effects on grain nutritional quality. Five rates of Se (0, 10, 25, 50, and 100 g ha -1 ) were applied as selenate via the soil to three rice genotypes under field conditions. RESULTS: Selenium concentrations in the leaves and polished grains increased linearly in response to Se application rates. A highly significant correlation was observed between the Se rates and the Se concentration in the leaves and grains, indicating high translocation of Se. The application of Se also increased the concentration of albumin, globulin, prolamin, and glutelin in polished grains. CONCLUSION: Biofortifying rice genotypes using 25 g Se ha -1 could increase the average daily Se intake from 4.64 to 66 µg day-1 . Considering that the recommended daily intake of Se by adults is 55 µg day-1 , this agronomic strategy could contribute to alleviating widespread Se malnutrition. © 2019 Society of Chemical Industry.


Subject(s)
Oryza/chemistry , Seed Storage Proteins/analysis , Selenium/analysis , Biofortification , Fertilizers/analysis , Genotype , Oryza/genetics , Oryza/metabolism , Plant Leaves/chemistry , Plant Leaves/genetics , Plant Leaves/metabolism , Seed Storage Proteins/metabolism , Seeds/chemistry , Seeds/genetics , Seeds/metabolism , Selenium/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...