Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters











Publication year range
1.
Phys Rev Lett ; 128(13): 131102, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35426719

ABSTRACT

We consider the effective field theory of gravity around black holes, and show that the coefficients of the dimension-8 operators are tightly constrained by causality considerations. Those constraints are consistent with-but tighter than-previously derived causality and positivity bounds and imply that the effects of one of the dimension-8 operators by itself cannot be observable while remaining consistent with causality. We then establish in which regime one can expect the generic dimension-8 and lower order operators to be potentially observable while preserving causality, providing a theoretical prior for future observations. We highlight the importance of "infrared causality" and show that the requirement of "asymptotic causality" or net (sub)luminality would fail to properly diagnose violations of causality.

2.
Phys Rev Lett ; 128(5): 051602, 2022 Feb 04.
Article in English | MEDLINE | ID: mdl-35179944

ABSTRACT

S-matrix bootstrap and positivity bounds are usually viewed as constraints on low-energy theories imposed by the requirement of a standard UV completion. By considering graviton-photon scattering in the standard model, we argue that the low-energy theory can be used to put constraints on the UV behavior of the gravitational scattering amplitudes.

3.
Phys Rev Lett ; 126(24): 241104, 2021 Jun 18.
Article in English | MEDLINE | ID: mdl-34213936

ABSTRACT

The metric of a spacetime can be greatly simplified if the spacetime is circular. We prove that in generic effective theories of gravity, the spacetime of a stationary, axisymmetric, and asymptotically flat solution must be circular if the solution can be obtained perturbatively from a solution in the general relativity limit. This result applies to a broad class of gravitational theories that include arbitrary scalars and vectors in their light sector, so long as their nonstandard kinetic terms and nonmininal couplings to gravity are treated perturbatively.

4.
Phys Rev Lett ; 121(22): 221101, 2018 Nov 30.
Article in English | MEDLINE | ID: mdl-30547636

ABSTRACT

The recent direct detection of gravitational waves from a neutron star merger with optical counterpart has been used to severely constrain models of dark energy that typically predict a modification of the gravitational wave speed. However, the energy scales observed at LIGO, and the particular frequency of the neutron star event, lie very close to the strong coupling scale or cutoff associated with many dark energy models. While it is true that at very low energies one expects gravitational waves to travel at a speed different than light in these models, the same is no longer necessarily true as one reaches energy scales close to the cutoff. We show explicitly how this occurs in a simple model with a known partial UV completion. Within the context of Horndeski, we show how the operators that naturally lie at the cutoff scale can affect the speed of propagation of gravitational waves and bring it back to unity at LIGO scales. We discuss how further missions including LISA and PTAs could play an essential role in testing such models.

5.
Living Rev Relativ ; 21(1): 2, 2018.
Article in English | MEDLINE | ID: mdl-29674941

ABSTRACT

Euclid is a European Space Agency medium-class mission selected for launch in 2020 within the cosmic vision 2015-2025 program. The main goal of Euclid is to understand the origin of the accelerated expansion of the universe. Euclid will explore the expansion history of the universe and the evolution of cosmic structures by measuring shapes and red-shifts of galaxies as well as the distribution of clusters of galaxies over a large fraction of the sky. Although the main driver for Euclid is the nature of dark energy, Euclid science covers a vast range of topics, from cosmology to galaxy evolution to planetary research. In this review we focus on cosmology and fundamental physics, with a strong emphasis on science beyond the current standard models. We discuss five broad topics: dark energy and modified gravity, dark matter, initial conditions, basic assumptions and questions of methodology in the data analysis. This review has been planned and carried out within Euclid's Theory Working Group and is meant to provide a guide to the scientific themes that will underlie the activity of the group during the preparation of the Euclid mission.

6.
Living Rev Relativ ; 17(1): 7, 2014.
Article in English | MEDLINE | ID: mdl-28179850

ABSTRACT

We review recent progress in massive gravity. We start by showing how different theories of massive gravity emerge from a higher-dimensional theory of general relativity, leading to the Dvali-Gabadadze-Porrati model (DGP), cascading gravity, and ghost-free massive gravity. We then explore their theoretical and phenomenological consistency, proving the absence of Boulware-Deser ghosts and reviewing the Vainshtein mechanism and the cosmological solutions in these models. Finally, we present alternative and related models of massive gravity such as new massive gravity, Lorentz-violating massive gravity and non-local massive gravity.

7.
Living Rev Relativ ; 16(1): 6, 2013.
Article in English | MEDLINE | ID: mdl-29142500

ABSTRACT

Euclid is a European Space Agency medium-class mission selected for launch in 2019 within the Cosmic Vision 2015-2025 program. The main goal of Euclid is to understand the origin of the accelerated expansion of the universe. Euclid will explore the expansion history of the universe and the evolution of cosmic structures by measuring shapes and red-shifts of galaxies as well as the distribution of clusters of galaxies over a large fraction of the sky. Although the main driver for Euclid is the nature of dark energy, Euclid science covers a vast range of topics, from cosmology to galaxy evolution to planetary research. In this review we focus on cosmology and fundamental physics, with a strong emphasis on science beyond the current standard models. We discuss five broad topics: dark energy and modified gravity, dark matter, initial conditions, basic assumptions and questions of methodology in the data analysis. This review has been planned and carried out within Euclid's Theory Working Group and is meant to provide a guide to the scientific themes that will underlie the activity of the group during the preparation of the Euclid mission.

8.
Phys Rev Lett ; 106(23): 231101, 2011 Jun 10.
Article in English | MEDLINE | ID: mdl-21770493

ABSTRACT

We construct four-dimensional covariant nonlinear theories of massive gravity which are ghost-free in the decoupling limit to all orders. These theories resum explicitly all the nonlinear terms of an effective field theory of massive gravity. We show that away from the decoupling limit the Hamiltonian constraint is maintained at least up to and including quartic order in nonlinearities, hence excluding the possibility of the Boulware-Deser ghost up to this order. We also show that the same remains true to all orders in a similar toy model.

9.
Phys Rev Lett ; 103(16): 161601, 2009 Oct 16.
Article in English | MEDLINE | ID: mdl-19905687

ABSTRACT

In the cascading gravity brane-world scenario, our 3-brane lies within a succession of lower-codimension branes, each with their own induced gravity term, embedded into each other in a higher-dimensional space-time. In the (6+1)-dimensional version of this scenario, we show that a 3-brane with tension remains flat, at least for sufficiently small tension that the weak-field approximation is valid. The bulk solution is singular nowhere and remains in the perturbative regime everywhere.

10.
Phys Rev Lett ; 100(25): 251603, 2008 Jun 27.
Article in English | MEDLINE | ID: mdl-18643651

ABSTRACT

We present a generalization of the Dvali-Gabadadze-Porrati scenario to higher codimensions which, unlike previous attempts, is free of ghost instabilities. The 4D propagator is made regular by embedding our visible 3-brane within a 4-brane, each with their own induced gravity terms, in a flat 6D bulk. The model is ghost-free if the tension on the 3-brane is larger than a certain critical value, while the induced metric remains flat. The gravitational force law "cascades" from a 6D behavior at the largest distances followed by a 5D and finally a 4D regime at the shortest scales.

SELECTION OF CITATIONS
SEARCH DETAIL