Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
J Clin Pharmacol ; 64(2): 264-274, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37694449

ABSTRACT

Here, we report the clinical pharmacology data from LUMINA-1 (NCT03188666), a Phase 2 trial that evaluated garetosmab (a monoclonal antibody against activin A) in patients with fibrodysplasia ossificans progressiva. Forty-four patients were randomly assigned to intravenous 10 mg/kg of garetosmab or placebo every 4 weeks in a double-blind 28-week treatment period, followed by a 28-week open-label treatment period with garetosmab, and subsequent open-label extension. Serum samples were obtained to assess pharmacokinetics (PK), immunogenicity, and bone morphogenetic protein 9 (BMP9). Comparative exposure-response analyses for efficacy and safety were performed with trough concentrations (Ctrough ) of garetosmab prior to dosing. Steady-state PK was reached 12-16 weeks after the first dose of garetosmab, with mean (standard deviation) Ctrough of 105 ± 30.8 mg/L. Immunogenicity assessments showed anti-garetosmab antibody formation in 1 patient (1/43; 2.3%); titers were low, and did not affect PK or clinical efficacy. Median concentrations of BMP9 in serum were approximately 40 pg/mL at baseline. There were no meaningful differences in PK or BMP9 concentration-time profiles between patients who did and did not experience epistaxis or death. The comparative exposure-response analyses demonstrated no association between Ctrough and efficacy or safety. PK findings were consistent with prior data in healthy volunteers and were typical for a monoclonal antibody administered at doses sufficient to saturate target-mediated clearance. There were no trends that suggested patients with higher serum exposures to garetosmab were more likely to experience a reduction in heterotopic ossification or adverse events. Garetosmab is being further evaluated in the Phase 3 OPTIMA trial.


Subject(s)
Myositis Ossificans , Pharmacology, Clinical , Humans , Myositis Ossificans/drug therapy , Myositis Ossificans/metabolism , Antibodies, Monoclonal/adverse effects
2.
Clin Orthop Relat Res ; 481(12): 2447-2458, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37156007

ABSTRACT

BACKGROUND: Fibrodysplasia ossificans progressiva (FOP) is an ultrarare genetic disorder with episodic and progressive heterotopic ossification. Tissue trauma is a major risk factor for flareups, heterotopic ossification (HO), and loss of mobility in patients with FOP. The International Clinical Council on FOP generally recommends avoiding surgery in patients with FOP unless the situation is life-threatening, because soft tissue injury can trigger an FOP flareup. Surprisingly little is known about flareups, HO formation, and loss of mobility after fractures of the normotopic (occurring in the normal place, distinct from heterotopic) skeleton when treated nonoperatively in patients with FOP. QUESTIONS/PURPOSES: (1) What proportion of fractures had radiographic evidence of union (defined as radiographic evidence of healing at 6 weeks) or nonunion (defined as the radiographic absence of a bridging callus at 3 years after the fracture)? (2) What proportion of patients had clinical symptoms of an FOP flareup because of the fracture (defined by increased pain or swelling at the fracture site within several days after closed immobilization)? (3) What proportion of patients with fractures had radiographic evidence of HO? (4) What proportion of patients lost movement after a fracture? METHODS: We retrospectively identified 36 patients with FOP from five continents who sustained 48 fractures of the normotopic skeleton from January 2001 to February 2021, who were treated nonoperatively, and who were followed for a minimum of 18 months after the fracture and for as long as 20 years, depending on when they sustained their fracture during the study period. Five patients (seven fractures) were excluded from the analysis to minimize cotreatment bias because these patients were enrolled in palovarotene clinical trials (NCT02190747 and NCT03312634) at the time of their fractures. Thus, we analyzed 31 patients (13 male, 18 female, median age 22 years, range 5 to 57 years) who sustained 41 fractures of the normotopic skeleton that were treated nonoperatively. Patients were analyzed at a median follow-up of 6 years (range 18 months to 20 years), and none was lost to follow-up. Clinical records for each patient were reviewed by the referring physician-author and the following data for each fracture were recorded: biological sex, ACVR1 gene pathogenic variant, age at the time of fracture, fracture mechanism, fracture location, initial treatment modality, prednisone use at the time of the fracture as indicated in the FOP Treatment Guidelines for flare prevention (2 mg/kg once daily for 4 days), patient-reported flareups (episodic inflammatory lesions of muscle and deep soft connective tissue characterized variably by swelling, escalating pain, stiffness, and immobility) after the fracture, follow-up radiographs of the fracture if available, HO formation (yes or no) as a result of the fracture determined at a minimum of 6 weeks after the fracture, and patient-reported loss of motion at least 6 months after and as long as 20 years after the fracture. Postfracture radiographs were available in 76% (31 of 41) of fractures in 25 patients and were independently reviewed by the referring physician-author and senior author for radiographic criteria of fracture healing and HO. RESULTS: Radiographic healing was noted in 97% (30 of 31) of fractures at 6 weeks after the incident fracture. Painless nonunion was noted in one patient who sustained a displaced patellar fracture and HO. In seven percent (three of 41) of fractures, patients reported increased pain or swelling at or near the fracture site within several days after fracture immobilization that likely indicated a site-specific FOP flareup. The same three patients reported a residual loss of motion 1 year after the fracture compared with their prefracture status. HO developed in 10% (three of 31) of the fractures for which follow-up radiographs were available. Patient-reported loss of motion occurred in 10% (four of 41) of fractures. Two of the four patients reported noticeable loss of motion and the other two patients reported that the joint was completely immobile (ankylosis). CONCLUSION: Most fractures treated nonoperatively in individuals with FOP healed with few flareups, little or no HO, and preservation of mobility, suggesting an uncoupling of fracture repair and HO, which are two inflammation-induced processes of endochondral ossification. These findings underscore the importance of considering nonoperative treatment for fractures in individuals with FOP. Physicians who treat fractures in patients with FOP should consult with a member of the International Clinical Council listed in the FOP Treatment Guidelines ( https://www.iccfop.org ). LEVEL OF EVIDENCE: Level IV, therapeutic study.


Subject(s)
Fractures, Bone , Myositis Ossificans , Ossification, Heterotopic , Humans , Male , Female , Child, Preschool , Child , Adolescent , Young Adult , Adult , Middle Aged , Infant, Newborn , Myositis Ossificans/diagnostic imaging , Myositis Ossificans/genetics , Myositis Ossificans/therapy , Retrospective Studies , Ossification, Heterotopic/diagnostic imaging , Ossification, Heterotopic/etiology , Ossification, Heterotopic/therapy , Pain/complications
3.
Int J Mol Sci ; 24(3)2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36768622

ABSTRACT

Fibrodysplasia ossificans progressiva (FOP) is a catastrophic, ultra-rare disease of heterotopic ossification caused by genetic defects in the ACVR1 gene. The mutant ACVR1 receptor, when triggered by an inflammatory process, leads to heterotopic ossification of the muscles and ligaments. Activin A has been discovered as the main osteogenic ligand of the FOP ACVR1 receptor. However, the source of Activin A itself and the trigger of its production in FOP individuals have remained elusive. We used primary dermal fibroblasts from five FOP patients to investigate Activin A production and how this is influenced by inflammatory cytokines in FOP. FOP fibroblasts showed elevated Activin A production compared to healthy controls, both in standard culture and osteogenic transdifferentiation conditions. We discovered TGFß1 to be an FOP-specific stimulant of Activin A, shown by the upregulation of the INHBA gene and protein expression. Activin A and TGFß1 were both induced by BMP4 in FOP and control fibroblasts. Treatment with TNFα and IL6 produced negligible levels of Activin A and TGFß1 in both cell groups. We present for the first time TGFß1 as a triggering factor of Activin A production in FOP. As TGFß1 can promote the induction of the main driver of FOP, TGFß1 could also be considered a possible therapeutic target in FOP treatment.


Subject(s)
Myositis Ossificans , Ossification, Heterotopic , Humans , Myositis Ossificans/genetics , Myositis Ossificans/metabolism , Transforming Growth Factor beta/metabolism , Signal Transduction/genetics , Ossification, Heterotopic/genetics , Fibroblasts/metabolism , Activin Receptors, Type I/genetics , Activin Receptors, Type I/metabolism , Mutation
4.
Sci Rep ; 12(1): 14686, 2022 08 29.
Article in English | MEDLINE | ID: mdl-36038602

ABSTRACT

Inherited bone disorders account for about 10% of documented Mendelian disorders and are associated with high financial burden. Their study requires osteoblasts which play a critical role in regulating the development and maintenance of bone tissue. However, bone tissue is not always available from patients. We developed a highly efficient platelet lysate-based approach to directly transdifferentiate skin-derived human fibroblasts to osteoblast-like cells. We extensively characterized our in vitro model by examining the expression of osteoblast-specific markers during the transdifferentiation process both at the mRNA and protein level. The transdifferentiated osteoblast-like cells showed significantly increased expression of a panel of osteogenic markers. Mineral deposition and ALP activity were also shown, confirming their osteogenic properties. RNA-seq analysis allowed the global study of changes in the transcriptome of the transdifferentiated cells. The transdifferentiated cells clustered separately from the primary fibroblasts with regard to the significantly upregulated genes indicating a distinct transcriptome profile; transdifferentiated osteoblasts also showed significant enrichment in gene expression related to skeletal development and bone mineralization. Our presented in vitro model may potentially contribute to the prospect of studying osteoblast-dependent disorders in patient-derived cells.


Subject(s)
Cell Transdifferentiation , Osteoblasts , Calcification, Physiologic/genetics , Cell Differentiation/genetics , Cell Transdifferentiation/genetics , Fibroblasts , Humans , Osteoblasts/metabolism , Osteogenesis/genetics
5.
Hum Gene Ther ; 33(15-16): 782-788, 2022 08.
Article in English | MEDLINE | ID: mdl-35502479

ABSTRACT

Fibrodysplasia ossificans progressiva (FOP) is a rare and devastating genetic disease, in which soft connective tissue is converted into heterotopic bone through an endochondral ossification process. Patients succumb early as they gradually become trapped in a second skeleton of heterotopic bone. Although the underlying genetic defect is long known, the inherent complexity of the disease has hindered the discovery of effective preventions and treatments. New developments in the gene therapy field have motivated its consideration as an attractive therapeutic option for FOP. However, the immune system's role in FOP activation and the as-yet unknown primary causative cell, are crucial issues which must be taken into account in the therapy design. While gene therapy offers a potential therapeutic solution, more knowledge about FOP is needed to enable its optimal and safe application.


Subject(s)
Myositis Ossificans , Ossification, Heterotopic , Activin Receptors, Type I/genetics , Feasibility Studies , Genetic Therapy/adverse effects , Humans , Myositis Ossificans/complications , Myositis Ossificans/genetics , Myositis Ossificans/therapy , Ossification, Heterotopic/genetics
6.
Orthop Res Rev ; 14: 113-120, 2022.
Article in English | MEDLINE | ID: mdl-35480068

ABSTRACT

Fibrodysplasia ossificans progressiva (FOP), sometimes known as myositis ossificans progressiva, is an ultra-rare disease in which bone is formed in muscular tissue, tendons and ligaments. This is known as heterotopic ossification (HO). FOP is caused by a heterozygous mutation in the highly conserved ACVR1/ALK2 gene which affects about 1 in 1.5-2 million individuals. At birth, patients with the predominant R206H mutation only exhibit a bilateral hallux valgus. During childhood, heterotopic bone formation develops in a typical pattern, affecting the axial muscles first before appendicular body parts are involved. HO can start spontaneously but is often elicited by soft tissue trauma or medical procedures. After soft tissue injury, an inflammatory process called a flare-up can start, followed by the formation of HO. HO leads to a limited range of motion, culminating in complete ankylosis of nearly all joints. As a result of HO surrounding the thorax, patients often suffer from thoracic insufficiency syndrome (TIS). TIS is the most common cause of a limited life expectancy for FOP patients, with a median life expectancy of 56 years. Management is focused on preventing soft-tissue injury that can provoke flare-ups. This includes prevention of iatrogenic damage by biopsies, intramuscular injections and surgery. Anti-inflammatory medication is often started when a flare-up occurs but has a poor basis of evidence. Several forms of potential treatment for FOP are being researched in clinical trials. Progression of the disease is monitored using CT and 18F-NaF PET/CT combined with functional assessments. Patients are regularly evaluated for frequently occurring complications such as restrictive lung disease. Here, we review the current management, monitoring and treatment of FOP.

7.
Front Endocrinol (Lausanne) ; 12: 732728, 2021.
Article in English | MEDLINE | ID: mdl-34858325

ABSTRACT

Fibrodysplasia ossificans progressiva (FOP) is an ultra-rare progressive genetic disease effecting one in a million individuals. During their life, patients with FOP progressively develop bone in the soft tissues resulting in increasing immobility and early death. A mutation in the ACVR1 gene was identified as the causative mutation of FOP in 2006. After this, the pathophysiology of FOP has been further elucidated through the efforts of research groups worldwide. In 2015, a workshop was held to gather these groups and discuss the new challenges in FOP research. Here we present an overview and update on these topics.


Subject(s)
Endocrinology/trends , Myositis Ossificans , Congresses as Topic , Endocrinology/methods , Expert Testimony/trends , History, 21st Century , Humans , Mutation/physiology , Myositis Ossificans/diagnosis , Myositis Ossificans/etiology , Myositis Ossificans/pathology , Myositis Ossificans/therapy , Ossification, Heterotopic/genetics , Ossification, Heterotopic/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...