Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Pharmacother ; 168: 115644, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37839112

ABSTRACT

Osteoarthritis (OA) is a pathology that is characterized by progressive erosion of articular cartilage. In this context, medicinal plants have become relevant tools regarding their potential role in the prevention and treatment of OA, being safe and effective. The aim of this work was investigate the therapeutic efficacy of the ethyl acetate fraction of Bixa orellana leaves (BoEA) and ellagic acid (ElAc) for the therapeutic treatment of OA induced by monosodium iodoacetate (MIA) in rats. The plant material was extracted via maceration with 70 % hydroalcoholic solvent (BoHE). The ethyl acetate (BoEA) fraction was by solvents in increasing order of polarity. The ElAc was identified and isolated in BoEA using high performance liquid chromatography (HPLC-DAD) and analytical curve. The OA was induced using MIA in the right knee at the knee joint. Doses of BoEA and ElAc were administered daily (every 24 h, orally) at concentrations of 50, 100 and 50 mg/kg, respectively, for 28 days after induced OA. We evaluated the animals through clinical and radiological examinations every 7 days and, on the 29th day, the animals were euthanized, the joints being removed for histopathological analysis and the serum for cytokine analysis. BoEA and ElAc compounds reduced inflammation and nociception in OA and were as effective as indomethacin in clinical parameters of joint discomfort and allodynia in rats, in addition to showing improvements in radiological and histopathological images, acting on the progress of cartilage deterioration, proving properties related to anti-inflammatory and analgesic processes, being important allies for new therapeutic interventions for the treatment of OA.


Subject(s)
Cartilage, Articular , Osteoarthritis , Rats , Animals , Iodoacetic Acid/toxicity , Bixaceae , Ellagic Acid/pharmacology , Ellagic Acid/therapeutic use , Iodoacetates/pharmacology , Disease Models, Animal , Osteoarthritis/chemically induced , Osteoarthritis/drug therapy
2.
Front Pharmacol ; 13: 999131, 2022.
Article in English | MEDLINE | ID: mdl-36313341

ABSTRACT

Eugenia brejoensis Mazine (Myrtaceae) is source of an essential oil (EbEO) with anti-infective activities against Staphylococcus aureus. This study evaluated the antimicrobial and anti-inflammatory potentials of EbEO in S. aureus-infected skin wounds. The excisional lesions (64 mm2) were induced on Swiss mice back (6 to 8-week-old) that were allocated into 3 groups (n = 12): 1) non-infected wounds (CON); 2) wounds infected with S. aureus ATCC 6538 (Sa); 3) S. aureus-infected wounds and treated with EbEO (Sa + EbEO). The infected groups received approximately 104 CFU/wound. The animals were treated with EbEO (10 µg/wound/day) or vehicle from the 1-day post-infection (dpi) until the 10th dpi. The clinical parameters (wound area, presence of exudate, edema intensity, etc.) were daily analyzed. The levels of inflammatory mediators (cytokines, nitric oxide, VEGF) and bacterial load were measured at the cutaneous tissue at 4th dpi and 10th dpi. Topical application of EbEO accelerated wound contraction with an average contraction of 83.48 ± 11.27 % of the lesion area until 6th dpi. In this period, the rates of lesion contraction were 54.28 ± 5.57% and 34.5 ± 2.67% for CON and Sa groups, respectively. The positive effects of EbEO on wound contraction were associated with significantly (p < 0.05) reduction on bacterial load and the release of inflammatory mediators (IL-6, IL-17A, TNF-α, NO and VEGF). Taken together, these data confirm the antimicrobial potential of EbEO and provide insights into its anti-inflammatory effects, making this essential oil an interesting candidate for the development of new therapeutic alternatives for infected cutaneous wounds.

3.
Biomed Pharmacother ; 133: 111025, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33254018

ABSTRACT

The present study aimed to evaluate the antileishmanial effect, the mechanisms of action and the association with miltefosine of Vernonia brasiliana essential oil against Leishmania infantum promastigotes. This essential oil was obtained by hydrodistillation and its chemical composition was determined by gas chromatography-mass spectrometry (GC-MS). The antileishmanial activity against L. infantum promastigotes and cytotoxicity on DH82 cells were evaluated by MTT colorimetric assay. Ultrastructural alterations were evaluated by transmission electron microscopy. Changes in mitochondrial membrane potential, in the production of reactive oxygen species, and analysis of apoptotic events were determined by flow cytometry. The association between the essential oil and miltefosine was evaluated using the modified isobologram method. The most abundant component of the essential oil was ß-caryophyllene (21.47 %). Anti-Leishmania assays indicated an IC50 of 39.01 ±â€¯1.080 µg/mL for promastigote forms after 72 h of treatment. The cytotoxic concentration for DH82 cells was 63.13 ±â€¯1.211 µg/mL after 24 h of treatment. The effect against L. infantum was proven through the ultrastructural changes caused by the oil, such as kinetoplast and mitochondrial swelling, vesicles in the flagellar pocket, discontinuity of the nuclear membrane, nuclear fragmentation and condensation, and loss of organelles. It was observed that the oil leads to a decrease in the mitochondrial membrane potential (35.10 %, p = 0.0031), increased reactive oxygen species production, and cell death by late apoptosis (17.60 %, p = 0.020). The combination of the essential oil and miltefosine exhibited an antagonistic effect. This study evidences the antileishmanial action of V. brasiliana essential oil against L. infantum promastigotes.


Subject(s)
Antiprotozoal Agents/pharmacology , Apoptosis/drug effects , Leishmania infantum/drug effects , Oils, Volatile/pharmacology , Plant Oils/pharmacology , Polycyclic Sesquiterpenes/pharmacology , Vernonia , Animals , Antiprotozoal Agents/isolation & purification , Antiprotozoal Agents/toxicity , Cell Line , Dogs , Drug Interactions , Leishmania infantum/growth & development , Leishmania infantum/metabolism , Leishmania infantum/ultrastructure , Membrane Potential, Mitochondrial/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondria/ultrastructure , Oils, Volatile/isolation & purification , Oils, Volatile/toxicity , Phosphorylcholine/analogs & derivatives , Phosphorylcholine/pharmacology , Plant Oils/isolation & purification , Plant Oils/toxicity , Polycyclic Sesquiterpenes/isolation & purification , Polycyclic Sesquiterpenes/toxicity , Reactive Oxygen Species/metabolism , Vernonia/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...