Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 1421, 2021 01 14.
Article in English | MEDLINE | ID: mdl-33446825

ABSTRACT

Gut microbiota composition can modulate neuroendocrine function, inflammation, and cellular and immunological responses against different pathogens, including viruses. Zika virus (ZIKV) can infect adult immunocompetent individuals and trigger brain damage and antiviral responses. However, it is not known whether ZIKV infection could impact the gut microbiome from adult immunocompetent mice. Here, we investigated modifications induced by ZIKV infection in the gut microbiome of immunocompetent C57BL/6J mice. Adult C57BL/6J mice were infected with ZIKV and the gut microbiota composition was analyzed by next-generation sequencing of the V4 hypervariable region present in the bacterial 16S rDNA gene. Our data showed that ZIKV infection triggered a significant decrease in the bacteria belonging to Actinobacteria and Firmicutes phyla, and increased Deferribacteres and Spirochaetes phyla components compared to uninfected mice. Interestingly, ZIKV infection triggered a significant increase in the abundance of bacteria from the Spirochaetaceae family in the gut microbiota. Lastly, we demonstrated that modulation of microbiota induced by ZIKV infection may lead to intestinal epithelium damage and intense leukocyte recruitment to the intestinal mucosa. Taken together, our data demonstrate that ZIKV infection can impact the gut microbiota composition and colon tissue homeostasis in adult immunocompetent mice.


Subject(s)
Firmicutes , Gastrointestinal Microbiome , Intestinal Mucosa , Spirochaetaceae , Zika Virus Infection , Zika Virus/metabolism , Animals , Firmicutes/classification , Firmicutes/growth & development , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Intestinal Mucosa/virology , Mice , Spirochaetaceae/classification , Spirochaetaceae/growth & development , Zika Virus Infection/metabolism , Zika Virus Infection/microbiology
2.
J Breast Cancer ; 23(3): 233-245, 2020 06.
Article in English | MEDLINE | ID: mdl-32595986

ABSTRACT

Obesity is associated with increased risk and aggressiveness of many types of cancer. Women with obesity and breast cancer are more likely to be diagnosed with larger and higher-grade tumors and have higher incidence of metastases than lean individuals. Increasing evidence indicates that obesity includes systemic, chronic low-grade inflammation, and that adipose tissue can act as an important endocrine site, secreting a variety of substances that may regulate inflammation, immune response, and cancer predisposition. Obesity-associated inflammation appears to be initially mediated by macrophage infiltration into adipose tissue. Macrophages can surround damaged or necrotic adipocytes, forming "crown-like" structures (CLS). CLS are increased in breast adipose tissue from breast cancer patients and are more abundant in patients with obesity conditions. Moreover, the CLS index-ratio from individuals with obesity seems to influence breast cancer recurrence rates and survival. In this review, we discuss the most recent cellular and molecular mechanisms involved in CLS establishment in the white adipose tissue of women with obesity and their implications for breast cancer biology. We also explain how CLS influence the tumor microenvironment and affect breast cancer behavior. Targeting breast adipose tissue CLS can be a crucial therapeutic tool in cancer treatment, especially in patients with obesity.

3.
Front Immunol ; 10: 2926, 2019.
Article in English | MEDLINE | ID: mdl-31998283

ABSTRACT

Obesity is a chronic disease with rising worldwide prevalence and largely associated with several other comorbidities, such as cancer, non-alcoholic fatty liver disease (NAFLD), and metabolic syndrome. Hepatic steatosis, a hallmark of NAFLD, is strongly correlated with obesity and has been correlated with changes in the gut microbiota, which can promote its development through the production of short-chain fatty acids (SCFAs) that regulate insulin resistance, bile acid, choline metabolism, and inflammation. Recent studies have suggested a controversial role for the inflammasome/caspase-1 in the development of obesity and non-alcoholic steatohepatitis (NASH). Here, we evaluated the role of inflammasome NLRP3 and caspases 1/11 in the establishment of obesity and hepatic steatosis in diet-induced obese mice, correlating them with the global lipid profile of the liver and gut microbiota diversity. After feeding wild-type, caspases 1/11, and NLRP3 knockout mice with a standard fat diet (SFD) or a high-fat diet (HFD), we found that the caspases 1/11 knockout mice, but not NLRP3 knockout mice, were more susceptible to HFD-induced obesity, and developed enhanced hepatic steatosis even under SFD conditions. Lipidomics analysis of the liver, assessed by MALDI-MS analysis, revealed that the HFD triggered a significant change in global lipid profile in the liver of WT mice compared to those fed an SFD, and this profile was modified by the lack of caspases 1/11 and NLRP3. The absence of caspases 1/11 was also correlated with an increased presence of triacylglycerol in the liver. Gut microbial diversity analysis, using 16S rRNA gene sequencing, showed that there was also an increase of Proteobacteria and a higher Firmicutes/Bacteroidetes ratio in the gut of caspases 1/11 knockout mice fed an HFD. Overall, mice without caspases 1/11 harbored gut bacterial phyla involved with weight gain, obesity, and hepatic steatosis. Taken together, our data suggest an important role for caspases 1/11 in the lipid composition of the liver and in the modulation of the gut microbial community composition. Our results further suggest that HFD-induced obesity and the absence of caspases 1/11 may regulate both lipid metabolism and gut microbial diversity, and therefore may be associated with NAFLD and obesity.


Subject(s)
Caspase 1/metabolism , Caspases, Initiator/metabolism , Gastrointestinal Microbiome , Lipid Metabolism , Liver/metabolism , Obesity/enzymology , Animals , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/metabolism , Caspase 1/genetics , Caspases, Initiator/genetics , Diet, High-Fat , Fatty Acids, Volatile/metabolism , Female , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Obese , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , Obesity/genetics , Obesity/metabolism , Obesity/microbiology
4.
Front Immunol ; 10: 2927, 2019.
Article in English | MEDLINE | ID: mdl-31998284

ABSTRACT

Foam cells are specialized lipid-loaded macrophages derived from monocytes and are a key pathological feature of atherosclerotic lesions. Lysophosphatidylcholine (LPC) is a major lipid component of the plasma membrane with a broad spectrum of proinflammatory activities and plays a key role in atherosclerosis. However, the role of LPC in lipid droplet (LD) biogenesis and the modulation of inflammasome activation is still poorly understood. In the present study, we investigated whether LPC can induce foam cell formation through an analysis of LD biogenesis and determined whether the cell signaling involved in this process is mediated by the inflammasome activation pathway in human endothelial cells and monocytes. Our results showed that LPC induced foam cell formation in both types of cells by increasing LD biogenesis via a NLRP3 inflammasome-dependent pathway. Furthermore, LPC induced pyroptosis in both cells and the activation of the inflammasome with IL-1ß secretion, which was dependent on potassium efflux and lysosomal damage in human monocytes. The present study described the IL-1ß secretion and foam cell formation triggered by LPC via an inflammasome-mediated pathway in human monocytes and endothelial cells. Our results will help improve our understanding of the relationships among LPC, LD biogenesis, and NLRP3 inflammasome activation in the pathogenesis of atherosclerosis.


Subject(s)
Endothelial Cells/immunology , Foam Cells/immunology , Inflammasomes/immunology , Lysophosphatidylcholines/immunology , Monocytes/immunology , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , Pyroptosis , Endothelial Cells/cytology , Foam Cells/cytology , Humans , Inflammasomes/genetics , Interleukin-1beta/genetics , Interleukin-1beta/immunology , Monocytes/cytology , NLR Family, Pyrin Domain-Containing 3 Protein/genetics
5.
PLoS One ; 8(8): e72826, 2013.
Article in English | MEDLINE | ID: mdl-23991156

ABSTRACT

The bioactive compounds content and the antioxidant activity (AA) of twelve fruits native to the Cerrado were compared with the Red Delicious apple by means of the antiradical efficiency (using the 2,2-diphenyl-1-picrylhydrazil assay/DPPH), ferric reducing antioxidant power (FRAP) and the ß-carotene/linoleic system. The antiradical efficiency (AE) and the kinetic parameters (Efficient concentration/EC50 and time needed to reach the steady state to EC50 concentration/TEC50) of the DPPH curve were also evaluated for comparison with the Trolox equivalent (TE) values. A strong, significant and positive correlation was observed between the TE and AE values, whereas a weak and negative correlation was observed between TE and EC50, suggesting that the values of AE and TE are more useful for the determination of antiradical activity in fruits than the widely used EC50. The total phenolic content found in the fruits corresponded positively to their antioxidant activity. The high content of bioactive compounds (flavanols, anthocyanins or vitamin C) relative to the apple values found in araticum, cagaita, cajuzinho, jurubeba, lobeira, magaba and tucum corresponded to the high antioxidant activity of these fruits. Flavanols and anthocyanins may be the main bioactive components in these Cerrado fruits. The daily consumption of at least seven of the twelve Cerrado fruits studied, particularly, araticum, cagaita, lobeira and tucum, may confer protection against oxidative stress, and thus, they may prevent chronic diseases and premature aging. The findings of this study should stimulate demand, consumption and cultivation of Cerrado fruits and result in sustainable development of the region where this biome dominates.


Subject(s)
Antioxidants/analysis , Fruit/chemistry , Brazil , Spectrophotometry, Ultraviolet
SELECTION OF CITATIONS
SEARCH DETAIL
...