Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 322: 124856, 2024 Dec 05.
Article in English | MEDLINE | ID: mdl-39047667

ABSTRACT

Traditional soil phosphorus (P) sorption capacity is examined from a Langmuir isotherm batch technique, which is time-consuming, labour intensive and generates chemical waste. In this work, we provide an efficient and convenient technique with MIR spectroscopy to predict the Langmuir parameter of soil P sorption maximum capacity (Smax, mg·kg-1). Four spectral libraries from benchtop (Bruker) and handheld (Agilent) MIR spectrometers were built with samples in two particle size ranges, <0.100 mm (ball-milled) and <2 mm. respectively. Using an archive of samples with a database of sorption parameters, soils were classified into 'low' and 'high' sorption capacities. Chemometric regression models of partial least squares (PLS), Cubist, support vector machine (SVM) regression and random forest (RF) were evaluated for Smax prediction. Bruker spectral libraries with both soil particle sizes yielded 'excellent models', with SVM predicting Smax values with high accuracy (RPIQV = 4.50 and 4.25 for the spectral libraries of the ball-milled and <2 mm samples, respectively). In comparison, the Agilent handheld spectral libraries contained more noise and less resolution. For Agilent MIR spectroscopy, more homogeneous samples after ball milling resulted in a higher accurate Smax prediction. For Agilent libraries of ball-milled samples, an 'approximate quantitative model' (RPIQV = 2.74) was obtained from the raw spectra using the Cubist algorithm. However, for Agilent spectroscopy of <2 mm samples, the best performing Cubist algorithm can only achieve a 'fair model' (RPIQV=2.23) with the potential to discriminate between 'low' and 'high' Smax values. The results suggest that the benchtop spectrometer can predict the Langmuir Smax value with high accuracy without the need to ball mill samples. However, the handheld spectrometer can only make approximate quantitative predictions of Smax for ball-milled samples. For <2 mm samples, Agilent can only be used to classify 'low' and 'high' sorption capacity soils.

2.
Food Chem ; 342: 128267, 2021 Apr 16.
Article in English | MEDLINE | ID: mdl-33067047

ABSTRACT

Cocoa butter provides desirable sensory properties to chocolates; however, the exposure of chocolate to temperature variations during transportation and/or storage can lead to changes in the polymorphic form of butter, with the appearance of a dull-white film on the chocolate surface, known as fat bloom. This study investigated the use of a portable NIR spectrometer combined with chemometric tools to discriminate milk chocolate, white chocolate, 40% cocoa chocolate, and 70% cocoa chocolate samples, which were subjected to temperature abuse for 6 hours. The PCA allowed separating the samples into three classes: control at 20 °C, chocolate subjected to 35 °C, and chocolate subjected to 40 °C, for each type of chocolate studied. The PLS-DA models provided sensibility, specificity, and accuracy values in the range of 80 to 100%, and allowed identifying the wavelengths associated with the different chocolates that most impacted the construction of the models.


Subject(s)
Chocolate/analysis , Fatty Acids/analysis , Fatty Acids/chemistry , Food Analysis/methods , Spectrophotometry, Infrared/instrumentation , Temperature , Time Factors
3.
Sci Total Environ ; 658: 895-900, 2019 Mar 25.
Article in English | MEDLINE | ID: mdl-30583184

ABSTRACT

Precision agriculture requires faster and automatic responses for fertility parameters, especially regarding soil organic matter (SOM). In Brazil, the standard methodology for SOM determination is a wet procedure based on the oxidation of the sample by an excess of potassium dichromate based on Walkley-Black method. This methodology has serious drawbacks, since, at a national level, generates approximately 600,000 L/year of toxic acid waste containing Cr3+ and possibly Cr6+, besides time consuming and expensive. Herein, we present a faster green methodology that can eliminate the generation of these hazardous wastes and reduces the costs of analysis by approximately 80%, democratizing the soil fertility information and increasing the productivity. The methodology is based on the use of a national near infrared spectral library with approximately 43,000 samples and learning machine data analysis based on a random forest algorithm. The methodology was validated by submitting the prediction results of 12 blind soil samples to a proficiency assay used for fertility soil laboratories qualification, receiving the maximum quality excellence index, indicating that it is suitable for use in routine analysis.

SELECTION OF CITATIONS
SEARCH DETAIL