Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
J Inorg Biochem ; 247: 112332, 2023 10.
Article in English | MEDLINE | ID: mdl-37480762

ABSTRACT

The dehaloperoxidase-hemoglobin (DHP), first isolated from the coelom of a marine terebellid polychaete, Amphitrite ornata, is an example of a multi-functional heme enzyme. Long known for its reversible oxygen (O2) binding, further studies have established DHP activity as a peroxidase, oxidase, oxygenase, and peroxygenase. The specific reactivity depends on substrate binding at various internal and external binding sites. This study focuses on comparison of the binding and reactivity of the substrate 2,4-dichlorophenol (DCP) in the isoforms DHPA and B. There is strong interest in the degradation of DCP because of its wide use in the chemical industry, presence in waste streams, and particular reactivity to form dioxins, some of the most toxic compounds known. The catalytic efficiency is 3.5 times higher for DCP oxidation in DHPB than DHPA by a peroxidase mechanism. However, DHPA and B both show self-inhibition even at modest concentrations of DCP. This phenomenon is analogous to the self-inhibition of 2,4,6-trichlorophenol (TCP) at higher concentration. The activation energies of the electron transfer steps in DCP in DHPA and DHPB are 19.3 ± 2.5 and 24.3 ± 3.2 kJ/mol, respectively, compared to 37.2 ± 6.5 kJ/mol in horseradish peroxidase (HRP), which may be a result of the more facile electron transfer of an internally bound substrate in DHPA. The x-ray crystal structure of DHPA bound with DCP determined at 1.48 Å resolution, shows tight substrate binding inside the heme pocket of DHPA (PDB 8EJN). This research contributes to the studies of DHP as a naturally occurring bioremediation enzyme capable of oxidizing a wide range of environmental pollutants.


Subject(s)
Chlorophenols , Phenols , Coloring Agents , Heme , Peroxidase , Peroxidases
2.
J Inorg Biochem ; 238: 112020, 2023 01.
Article in English | MEDLINE | ID: mdl-36272837

ABSTRACT

Dehaloperoxidase (DHP) from the marine polychaete Amphitrite ornata is a multifunctional enzyme that possesses peroxidase, peroxygenase, oxidase and oxygenase activities. Herein, we investigated the reactivity of DHP B with bisphenol A (BPA) and related compounds (bisphenol E, bisphenol F, tetrachlorobisphenol A, 2,2'-biphenol, 3,3'-biphenol, 4,4'-biphenol, and 3,3'-dibromo-4,4'-biphenol). As a previously unknown substrate for DHP B, BPA (as a representative substrate) is an endocrine disruptor widely used in polycarbonate and epoxy resins, thus resulting in human exposure. Reactivity studies with these substrates were investigated using high performance liquid chromatography (HPLC), and their corresponding oxidation products were determined by mass spectrometry (GC-MS/ LC-MS). BPA undergoes oxidation in the presence of DHP B and hydrogen peroxide yielding two cleavage products (4-isopropenylphenol and 4-(2-hydroxypropan-2-yl)phenol), and oligomers with varying degrees of oxidation. 18O-labeling studies confirmed that the O-atom incorporated into the products was derived exclusively from water, consistent with substrate oxidation via a peroxidase-based mechanism. The X-ray crystal structures of DHP bound with bisphenol E (1.48 Å), bisphenol F (1.75 Å), 2,2'-biphenol (1.90 Å) and 3,3'-biphenol (1.30 Å) showed substrate binding sites are in the distal pocket of the heme cofactor, similar to other previously studied DHP substrates. Stopped-flow UV-visible spectroscopy was utilized to investigate the mechanistic details and enzyme oxidation states during substrate turnover, and a reaction mechanism is proposed. The data presented here strongly suggest that DHP B can catalyze the oxidation of bisphenols and biphenols, thus providing evidence of how infaunal invertebrates can contribute to the biotransformation of these marine pollutants.


Subject(s)
Hemoglobins , Peroxidases , Phenols , Polychaeta , Hemoglobins/chemistry , Oxidoreductases , Peroxidases/metabolism , Polychaeta/enzymology
3.
J Inorg Biochem ; 236: 111944, 2022 11.
Article in English | MEDLINE | ID: mdl-35969974

ABSTRACT

The multifunctional catalytic globin dehaloperoxidase (DHP) from the marine worm Amphitrite ornata was shown to catalyze the H2O2-dependent oxidation of 2,4- and 2,6-dihalophenols (DXP; X = F, Cl, Br). Product identification by LC-MS revealed multiple monomeric products with varying degrees of oxidation and/or dehalogenation, as well as oligomers with n up to 6. Mechanistic and 18O-labeling studies demonstrated sequential dihalophenol oxidation via peroxidase and peroxygenase activities. Binding studies established that 2,4-DXP (X = Cl, Br) have the highest affinities of any known DHP substrate. X-ray crystallography identified different binding positions for 2,4- and 2,6-DXP substrates in the hydrophobic distal pocket of DHP. Correlation between the number of halogens and the substrate binding orientation revealed a halogen-dependent binding motif for mono- (4-halophenol), di- (2,4- and 2,6-dihalophenol) and trihalophenols (2,4,6-trihalopenol). Taken together, the findings here on dihalophenol reactivity with DHP advance our understanding of how these compounds bridge the inhibitory and oxidative functions of their mono- and trihalophenol counterparts, respectively, and provide further insight into the protein structure-function paradigm relevant to multifunctional catalytic globins in comparison to their monofunctional analogs.


Subject(s)
Hemoglobins , Polychaeta , Animals , Halogens , Hemoglobins/chemistry , Hydrogen Peroxide/chemistry , Peroxidases/metabolism
4.
Arch Biochem Biophys ; 673: 108079, 2019 09 30.
Article in English | MEDLINE | ID: mdl-31445024

ABSTRACT

The multifunctional catalytic hemoglobin dehaloperoxidase (DHP) from the terebellid polychaete Amphitrite ornata was found to catalyze the H2O2-dependent oxidation of EPA Priority Pollutants (4-Me-o-cresol, 4-Cl-m-cresol and pentachlorophenol) and EPA Toxic Substances Control Act compounds (o-, m-, p-cresol and 4-Cl-o-cresol). Biochemical assays (HPLC/LC-MS) indicated formation of multiple oxidation products, including the corresponding catechol, 2-methylbenzoquinone (2-MeBq), and oligomers with varying degrees of oxidation and/or dehalogenation. Using 4-Br-o-cresol as a representative substrate, labeling studies with 18O confirmed that the O-atom incorporated into the catechol was derived exclusively from H2O2, whereas the O-atom incorporated into 2-MeBq was from H2O, consistent with this single substrate being oxidized by both peroxygenase and peroxidase mechanisms, respectively. Stopped-flow UV-visible spectroscopic studies strongly implicate a role for Compound I in the peroxygenase mechanism leading to catechol formation, and for Compounds I and ES in the peroxidase mechanism that yields the 2-MeBq product. The X-ray crystal structures of DHP bound with 4-F-o-cresol (1.42 Å; PDB 6ONG), 4-Cl-o-cresol (1.50 Å; PDB 6ONK), 4-Br-o-cresol (1.70 Å; PDB 6ONX), 4-NO2-o-cresol (1.80 Å; PDB 6ONZ), o-cresol (1.60 Å; PDB 6OO1), p-cresol (2.10 Å; PDB 6OO6), 4-Me-o-cresol (1.35 Å; PDB 6ONR) and pentachlorophenol (1.80 Å; PDB 6OO8) revealed substrate binding sites in the distal pocket in close proximity to the heme cofactor, consistent with both oxidation mechanisms. The findings establish cresols as a new class of substrate for DHP, demonstrate that multiple oxidation mechanisms may exist for a given substrate, and provide further evidence that different substituents can serve as functional switches between the different activities performed by dehaloperoxidase. More broadly, the results demonstrate the complexities of marine pollution where both microbial and non-microbial systems may play significant roles in the biotransformations of EPA-classified pollutants, and further reinforces that heterocyclic compounds of anthropogenic origin should be considered as environmental stressors of infaunal organisms.


Subject(s)
Environmental Pollutants/metabolism , Globins/metabolism , Mixed Function Oxygenases/metabolism , Peroxidase/metabolism , United States Environmental Protection Agency , Biocatalysis , Mixed Function Oxygenases/chemistry , Models, Molecular , Peroxidase/chemistry , Protein Conformation , United States
5.
Biochemistry ; 57(30): 4455-4468, 2018 07 31.
Article in English | MEDLINE | ID: mdl-29949340

ABSTRACT

The dehaloperoxidase-hemoglobin (DHP) from the terebellid polychaete Amphitrite ornata is a multifunctional hemoprotein that catalyzes the oxidation of a wide variety of substrates, including halo/nitrophenols, haloindoles, and pyrroles, via peroxidase and/or peroxygenase mechanisms. To probe whether substrate substituent effects can modulate enzyme activity in DHP, we investigated its reactiviy against a panel of o-guaiacol substrates given their presence (from native/halogenated and non-native/anthropogenic sources) in the benthic environment that A. ornata inhabits. Using biochemical assays supported by spectroscopic, spectrometric, and structural studies, DHP was found to catalyze the H2O2-dependent oxidative dehalogenation of 4-haloguaiacols (F, Cl, and Br) to 2-methoxybenzoquinone (2-MeOBQ). 18O labeling studies confirmed that O atom incorporation was derived exclusively from water, consistent with substrate oxidation via a peroxidase-based mechanism. The 2-MeOBQ product further reduced DHP to its oxyferrous state, providing a link between the substrate oxidation and O2 carrier functions of DHP. Nonnative substrates resulted in polymerization of the initial substrate with varying degrees of oxidation, with 2-MeOBQ identified as a minor product. When viewed alongside the reactivity of previously studied phenolic substrates, the results presented here show that simple substituent effects can serve as functional switches between peroxidase and peroxygenase activities in this multifunctional catalytic globin. More broadly, when recent findings on DHP activity with nitrophenols and azoles are included, the results presented here further demonstrate the breadth of heterocyclic compounds of anthropogenic origin that can potentially disrupt marine hemoglobins or function as environmental stressors, findings that may be important when assessing the environmental impact of these pollutants (and their metabolites) on aquatic systems.


Subject(s)
Guaiacol/metabolism , Hemoglobins/metabolism , Peroxidases/metabolism , Polychaeta/enzymology , Animals , Crystallography, X-Ray , Guaiacol/analogs & derivatives , Halogenation , Hemoglobins/chemistry , Hydrogen Peroxide/metabolism , Models, Molecular , Oxidation-Reduction , Peroxidases/chemistry , Polychaeta/chemistry , Polychaeta/metabolism , Substrate Specificity
6.
Biochem J ; 475(9): 1533-1551, 2018 05 04.
Article in English | MEDLINE | ID: mdl-29626157

ABSTRACT

Glycoside hydrolase family 30 subfamily 8 (GH30-8) ß-1,4-endoxylanases are known for their appendage-dependent function requiring recognition of an α-1,2-linked glucuronic acid (GlcA) common to glucuronoxylans for hydrolysis. Structural studies have indicated that the GlcA moiety of glucuronoxylans is coordinated through six hydrogen bonds and a salt bridge. These GlcA-dependent endoxylanases do not have significant activity on xylans that do not bear GlcA substitutions such as unsubstituted linear xylooligosaccharides or cereal bran arabinoxylans. In the present study, we present the structural and biochemical characteristics of xylanase 30A from Clostridium acetobutylicum (CaXyn30A) which was originally selected for study due to predicted structural differences within the GlcA coordination loops. Amino acid sequence comparisons indicated that this Gram-positive-derived GH30-8 more closely resembles Gram-negative derived forms of these endoxylanases: a hypothesis borne out in the developed crystallographic structure model of the CaXyn30A catalytic domain (CaXyn30A-CD). CaXyn30A-CD hydrolyzes xylans to linear and substituted oligoxylosides showing the greatest rate with the highly arabinofuranose (Araf)-substituted cereal arabinoxylans. CaXyn30A-CD hydrolyzes xylooligosaccharides larger than xylotriose and shows an increased relative rate of hydrolysis for xylooligosaccharides containing α-1,2-linked arabinofuranose substitutions. Biochemical analysis confirms that CaXyn30A benefits from five xylose-binding subsites which extend from the -3 subsite to the +2 subsite of the binding cleft. These studies indicate that CaXyn30A is a GlcA-independent endoxylanase that may have evolved for the preferential recognition of α-1,2-Araf substitutions on xylan chains.


Subject(s)
Clostridium/enzymology , Endo-1,4-beta Xylanases/chemistry , Endo-1,4-beta Xylanases/metabolism , Glucuronates/metabolism , Models, Molecular , Oligosaccharides/metabolism , Protein Conformation , Amino Acid Sequence , Catalytic Domain , Crystallography, X-Ray , Hydrolysis , Plasmids , Sequence Homology , Substrate Specificity
7.
Biochemistry ; 53(15): 2474-82, 2014 Apr 22.
Article in English | MEDLINE | ID: mdl-24670063

ABSTRACT

Dehaloperoxidase hemoglobin A (DHP A) is a multifunctional hemoglobin that appears to have evolved oxidative pathways for the degradation of xenobiotics as a protective function that complements the oxygen transport function. DHP A possesses at least two internal binding sites, one for substrates and one for inhibitors, which include various halogenated phenols and indoles. Herein, we report the X-ray crystallographic structure of the carbonmonoxy complex (DHPCO). Unlike other DHP structures with 6-coordinated heme, the conformation of the distal histidine (H55) in DHPCO is primarily external or solvent exposed, despite the fact that the heme Fe is 6-coordinated. As observed generally in globins, DHP exhibits two distal histidine conformations (one internal and one external). In previous structural studies, we have shown that the distribution of H55 conformations is weighted strongly toward the external position when the DHP heme Fe is 5-coordinated. The large population of the external conformation of the distal histidine observed in DHPCO crystals at pH 6.0 indicates that some structural factor in DHP must account for the difference from other globins, which exhibit a significant external conformation only when pH < 4.5. While the original hypothesis suggested that interaction with a heme-Fe-bound ligand was the determinant of H55 conformation, the current study forces a refinement of that hypothesis. The external or open conformation of H55 is observed to have interactions with two propionate groups in heme, at distances of 3.82 and 2.73 Å, respectively. A relatively weak hydrogen bonding interaction between H55 and CO, combined with strong interactions with heme propionate (position 6), is hypothesized to strengthen the external conformation of H55. Density function theory (DFT) calculations were conducted to test whether there is a weaker hydrogen bond interaction between H55 and heme bonded CO or O2. Molecular dynamics simulations were conducted to examine how the tautomeric forms of H55 affect the dynamic motions of the distal histidine that govern the switching between open and closed conformations. The calculations support the modified hypothesis suggesting a competition between the strength of interactions with heme ligand and the heme propionates as the factors that determine the conformation of the distal histidine.


Subject(s)
Carbon Monoxide/chemistry , Hemoglobin A/chemistry , Hemoglobins/chemistry , Histidine/chemistry , Peroxidases/chemistry , Amino Acid Sequence , Crystallography, X-Ray , Electrophoresis, Polyacrylamide Gel , Molecular Sequence Data , Protein Conformation
8.
Proc Natl Acad Sci U S A ; 110(24): 9722-7, 2013 Jun 11.
Article in English | MEDLINE | ID: mdl-23716661

ABSTRACT

Pirin is a nuclear nonheme Fe protein of unknown function present in all human tissues. Here we describe that pirin may act as a redox sensor for the nuclear factor κB (NF-κB) transcription factor, a critical mediator of intracellular signaling that has been linked to cellular responses to proinflammatory signals and controls the expression of a vast array of genes involved in immune and stress responses. Pirin's regulatory effect was tested with several metals and at different oxidations states, and our spectroscopic results show that only the ferric form of pirin substantially facilitates binding of NF-κB proteins to target κB genes, a finding that suggests that pirin performs a redox-sensing role in NF-κB regulation. The molecular mechanism of such a metal identity- and redox state-dependent regulation is revealed by our structural studies of pirin. The ferrous and ferric pirin proteins differ only by one electron, yet they have distinct conformations. The Fe center is shown to play an allosteric role on an R-shaped surface area that has two distinct conformations based on the identity and the formal redox state of the metal. We show that the R-shaped area composes the interface for pirin-NF-κB binding that is responsible for modulation of NF-κB's DNA-binding properties. The nonheme Fe protein pirin is proposed to serve as a reversible functional switch that enables NF-κB to respond to changes in the redox levels of the cell nucleus.


Subject(s)
Carrier Proteins/chemistry , Iron/chemistry , NF-kappa B/chemistry , Nuclear Proteins/chemistry , Protein Structure, Tertiary , Binding Sites/genetics , Carrier Proteins/genetics , Carrier Proteins/metabolism , Crystallography, X-Ray , DNA/chemistry , DNA/genetics , DNA/metabolism , Dioxygenases , Humans , Iron/metabolism , Models, Molecular , Mutation , NF-kappa B/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Oxidation-Reduction , Protein Binding , Spectrometry, Fluorescence , Transcription Factor RelA/chemistry , Transcription Factor RelA/metabolism
9.
Biochemistry ; 52(14): 2427-39, 2013 Apr 09.
Article in English | MEDLINE | ID: mdl-23480178

ABSTRACT

X-ray crystal structures of dehaloperoxidase-hemoglobin A (DHP A) from Amphitrite ornata soaked with substrate, 2,4,6-tribromophenol (2,4,6-TBP), in buffer solvent with added methanol (MeOH), 2-propanol (2-PrOH), and dimethyl sulfoxide (DMSO) reveal an internal substrate binding site deep in the distal pocket above the α-edge of the heme that is distinct from the previously determined internal inhibitor binding site. The peroxidase function of DHP A has most often been studied using 2,4,6-trichlorophenol (2,4,6-TCP) as a substrate analogue because of the low solubility of 2,4,6-TBP in an aqueous buffer solution. Previous studies at low substrate concentrations pointed to the binding of substrate 2,4,6-TCP at an external site near the exterior heme ß- or δ-edge as observed in the class of heme peroxidases. Here we report that the turnover frequencies of both substrates 2,4,6-TCP and 2,4,6-TBP deviate from Michaelis-Menten kinetics at high concentrations. The turnover frequency reaches a maximum in the range of 1400-1700 µM, with a decrease in rate at higher concentrations that is both substrate- and solvent-dependent. The X-ray crystal structure is consistent with the presence of an internal active site above the heme α-edge, in which the substrate would be oxidized in two consecutive steps inside the enzyme, followed by attack by H2O via a water channel in the protein. The physiological role of the internal site may involve interactions with any of a number of aromatic toxins found in benthic ecosystems where A. ornata resides.


Subject(s)
Hemoglobins/chemistry , Peroxidases/chemistry , Polychaeta/enzymology , 2-Propanol/chemistry , Animals , Crystallography, X-Ray , Dimethyl Sulfoxide/chemistry , Hemoglobins/metabolism , Kinetics , Methanol/chemistry , Models, Molecular , Peroxidases/metabolism , Phenols/chemistry , Polychaeta/chemistry , Polychaeta/metabolism , Protein Conformation
10.
J Phys Chem B ; 116(40): 12065-77, 2012 Oct 11.
Article in English | MEDLINE | ID: mdl-22928870

ABSTRACT

The distal histidine mutations of dehaloperoxidase-hemoglobin A (DHP A) to aspartate (H55D) and asparagine (H55N) have been prepared to study the role played by the distal histidine in both activation and protection against oxidation by radicals in heme proteins. The H55D and H55N mutants of DHP A have ~6-fold and ~11-fold lower peroxidase activities than wild type enzyme toward the oxidation of 2,4,6-trichlorophenol (TCP) to yield 2,6-dichloroquinone (DCQ) in the presence of H(2)O(2). The origin of the lower rate constants may be the solvent-exposed conformations of distal D55 and N55, which would have the dual effect of destabilizing the binding of H(2)O(2) to the heme iron, and of removing the acid-base catalyst necessary for the heterolytic O-O bond cleavage of heme-bound H(2)O(2) (i.e., compound 0). The partial peroxidase activity of H55D can be explained if one considers that there are two conformations of the distal aspartate (open and closed) by analogy with the distal histidine. We hypothesize that the distal aspartate has an active conformation in the distal pocket (closed). Although the open form is observed in the low-temperature X-ray crystal structure of ferric H55D, the closed form is observed in the FTIR spectrum of the carbonmonoxy form of the H55D mutant. Consistent with this model, the H55D mutant also shows inhibition of TCP oxidation by 4-bromophenol (4-BP). Consistent with the protection hypothesis, compound ES, the tyrosyl radical-containing ferryl intermediate observed in WT DHP A, was not observed in H55D.


Subject(s)
Heme/metabolism , Hemoglobin A/metabolism , Histidine/metabolism , Hydrogen Peroxide/metabolism , Peroxidases/metabolism , Biocatalysis , Chlorophenols/chemistry , Chlorophenols/metabolism , Heme/chemistry , Hemoglobin A/chemistry , Histidine/chemistry , Histidine/genetics , Hydrogen Peroxide/chemistry , Models, Molecular , Molecular Structure , Mutation , Oxidation-Reduction , Peroxidases/chemistry , Quinones/chemistry , Quinones/metabolism
11.
Biopolymers ; 98(1): 27-35, 2012.
Article in English | MEDLINE | ID: mdl-23325557

ABSTRACT

A functional role for a protein cavity that stabilizes inhibitor binding has been established based on a comparison of Xe-derivatized and inhibitor-bound X-ray crystal structures in dehaloperoxidase-hemoglobin (DHP A) of Amphitrite ornata. The internal binding affinity of four different inhibitors, 4-fluorophenol, 4-chlorophenol, 4-bromophenol, and 4-iodophenol in the distal pocket has been shown previously to increase proportional to the radius of the para-halogen atom. Inhibition of oxidation of the native substrate, 2,4,6-tribromophenol, has been shown to follow the trend in inhibitor binding strength, because of a two-site competitive inhibition mechanism that involves displacement of the substrate by the inhibitor in a gated mechanism involving the distal histidine of DHP A. In this study, it is shown that the origin of the stronger binding by a larger para-halogen substituent coincides structurally with a Xe-binding cavity (Xe1) characterized structurally by X-ray crystallography. The Xe1 site is surrounded by amino acid resides L100, F21, F24, F35, F60, and V59 in the distal pocket, located 4.8 Å from the heme iron, in a position that is coincident with the para-bromine atom of the inhibitor 4-bromophenol. 4-bromophenol is prevalent in benthic ecosystems where A. ornata resides. A second, less well-defined, binding site in DHP A, labeled as Xe2, is located near the surface of the protein in the vicinity of amino acid residues L62, R69, D79, T82, and L83, which may be related to substrate docking on the surface of DHP A.


Subject(s)
Peroxidases , Protein Conformation , Animals , Crystallography, X-Ray , Hemoglobins , Polychaeta
12.
Biochemistry ; 50(44): 9664-80, 2011 Nov 08.
Article in English | MEDLINE | ID: mdl-21950839

ABSTRACT

The proximal side of dehaloperoxidase-hemoglobin A (DHP A) from Amphitrite ornata has been modified via site-directed mutagenesis of methionine 86 into aspartate (M86D) to introduce an Asp-His-Fe triad charge relay. X-ray crystallographic structure determination of the metcyano forms of M86D [Protein Data Bank (PDB) entry 3MYN ] and M86E (PDB entry 3MYM ) mutants reveal the structural origins of a stable catalytic triad in DHP A. A decrease in the rate of H(2)O(2) activation as well as a lowered reduction potential versus that of the wild-type enzyme was observed in M86D. One possible explanation for the significantly lower activity is an increased affinity for the distal histidine in binding to the heme Fe to form a bis-histidine adduct. Resonance Raman spectroscopy demonstrates a pH-dependent ligation by the distal histidine in M86D, which is indicative of an increased trans effect. At pH 5.0, the heme Fe is five-coordinate, and this structure resembles the wild-type DHP A resting state. However, at pH 7.0, the distal histidine appears to form a six-coordinate ferric bis-histidine (hemichrome) adduct. These observations can be explained by the effect of the increased positive charge on the heme Fe on the formation of a six-coordinate low-spin adduct, which inhibits the ligation and activation of H(2)O(2) as required for peroxidase activity. The results suggest that the proximal charge relay in peroxidases regulate the redox potential of the heme Fe but that the trans effect is a carefully balanced property that can both activate H(2)O(2) and attract ligation by the distal histidine. To understand the balance of forces that modulate peroxidase reactivity, we studied three M86 mutants, M86A, M86D, and M86E, by spectroelectrochemistry and nuclear magnetic resonance spectroscopy of (13)C- and (15)N-labeled cyanide adducts as probes of the redox potential and of the trans effect in the heme Fe, both of which can be correlated with the proximity of negative charge to the N(δ) hydrogen of the proximal histidine, consistent with an Asp-His-Fe charge relay observed in heme peroxidases.


Subject(s)
Aspartic Acid/chemistry , Catalytic Domain , Globins/chemistry , Histidine/chemistry , Animals , Aspartic Acid/genetics , Catalytic Domain/genetics , Crystallography, X-Ray , Electrochemistry , Globins/genetics , Helminth Proteins/chemistry , Helminth Proteins/genetics , Histidine/genetics , Magnetic Resonance Spectroscopy , Mutagenesis, Site-Directed , Polychaeta/enzymology , Polychaeta/genetics , Spectrophotometry, Ultraviolet , Spectrum Analysis, Raman
13.
Biophys J ; 99(5): 1586-95, 2010 Sep 08.
Article in English | MEDLINE | ID: mdl-20816071

ABSTRACT

Dehaloperoxidase (DHP) from the annelid Amphitrite ornata is a catalytically active hemoglobin-peroxidase that possesses a unique internal binding cavity in the distal pocket above the heme. The previously published crystal structure of DHP shows 4-iodophenol bound internally. This led to the proposal that the internal binding site is the active site for phenol oxidation. However, the native substrate for DHP is 2,4,6-tribromophenol, and all attempts to bind 2,4,6-tribromophenol in the internal site under physiological conditions have failed. Herein, we show that the binding of 4-halophenols in the internal pocket inhibits enzymatic function. Furthermore, we demonstrate that DHP has a unique two-site competitive binding mechanism in which the internal and external binding sites communicate through two conformations of the distal histidine of the enzyme, resulting in nonclassical competitive inhibition. The same distal histidine conformations involved in DHP function regulate oxygen binding and release during transport and storage by hemoglobins and myoglobins. This work provides further support for the hypothesis that DHP possesses an external binding site for substrate oxidation, as is typical for the peroxidase family of enzymes.


Subject(s)
Halogenation , Hemoglobins/metabolism , Iodobenzenes/metabolism , Iodobenzenes/pharmacology , Peroxidases/antagonists & inhibitors , Peroxidases/metabolism , Animals , Catalytic Domain , Crystallography, X-Ray , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacology , Hemoglobins/chemistry , Iodobenzenes/chemistry , Kinetics , Models, Molecular , Peroxidases/chemistry , Polychaeta/enzymology , Spectrum Analysis, Raman
14.
Acta Crystallogr D Biol Crystallogr ; 66(Pt 5): 529-38, 2010 May.
Article in English | MEDLINE | ID: mdl-20445228

ABSTRACT

As members of the globin superfamily, dehaloperoxidase (DHP) isoenzymes A and B from the marine annelid Amphitrite ornata possess hemoglobin function, but they also exhibit a biologically relevant peroxidase activity that is capable of converting 2,4,6-trihalophenols to the corresponding 2,6-dihaloquinones in the presence of hydrogen peroxide. Here, a comprehensive structural study of recombinant DHP B, both by itself and cocrystallized with isoenzyme A, using X-ray diffraction is presented. The structure of DHP B refined to 1.58 A resolution exhibits the same distal histidine (His55) conformational flexibility as that observed in isoenzyme A, as well as additional changes to the distal and proximal hydrogen-bonding networks. Furthermore, preliminary characterization of the DHP AB heterodimer is presented, which exhibits differences in the AB interface that are not observed in the A-only or B-only homodimers. These structural investigations of DHP B provide insights that may relate to the mechanistic details of the H(2)O(2)-dependent oxidative dehalogenation reaction catalyzed by dehaloperoxidase, present a clearer description of the function of specific residues in DHP at the molecular level and lead to a better understanding of the paradigms of globin structure-function relationships.


Subject(s)
Hemoglobins/chemistry , Peroxidases/chemistry , Polychaeta/enzymology , Animals , Crystallography, X-Ray , Hemoglobins/metabolism , Histidine/chemistry , Isoenzymes/chemistry , Isoenzymes/metabolism , Models, Molecular , Peroxidases/metabolism , Protein Conformation
15.
Biochemistry ; 48(10): 2164-72, 2009 Mar 17.
Article in English | MEDLINE | ID: mdl-19228049

ABSTRACT

The hemoglobin dehaloperoxidase (DHP), found in the coelom of the terebellid polychaete Amphitrite ornata, is a dual-function protein that has the characteristics of both hemoglobins and peroxidases. In addition to oxygen transport function, DHP readily oxidizes halogenated phenols in the presence of hydrogen peroxide. The peroxidase activity of DHP is high relative to that of wild-type myoglobin or hemoglobin, but the most definitive difference in DHP is a well-defined substrate-binding site in the distal pocket, which was reported for 4-iodophenol in the X-ray crystal structure of DHP. The binding of 2,4,6-trihalogenated phenols is relevant since 2,4,6-tribromophenol is considered to be the native substrate and 2,4,6-trichlorophenol also gives high turnover rates in enzymatic studies. The most soluble trihalogenated phenol, 2,4,6-trifluorophenol, acts as a highly soluble structural analogue to the native substrate 2,4,6-tribromophenol. To improve our understanding of substrate binding, we compared the most soluble substrate analogues, 4-bromophenol, 2,4-dichlorophenol, and 2,4,6-trifluorophenol, using (1)H and (19)F NMR to probe substrate binding interactions in the active site of the low-spin metcyano adduct of DHP. Both mono- and dihalogenated phenols induced changes in resonances of the heme prosthetic group and an internal heme edge side chain, while (1)H NMR, (19)F NMR, and relaxation data for a 2,4,6-trihalogenated substrate indicate a mode of binding on the exterior of DHP. The differences in binding are correlated with differences in enzymatic activity for the substrates studied.


Subject(s)
Hemoglobins/chemistry , Hydrocarbons, Halogenated/chemistry , Peroxidases/chemistry , Phenols/chemistry , Polychaeta/enzymology , Animals , Binding Sites/physiology , Catalysis , Catalytic Domain/physiology , Heme/chemistry , Hemoglobins/genetics , Hemoglobins/metabolism , Hydrocarbons, Halogenated/metabolism , Molecular Conformation , Nuclear Magnetic Resonance, Biomolecular , Peroxidases/genetics , Peroxidases/metabolism , Phenols/metabolism , Polychaeta/genetics , Potassium Cyanide/chemistry , Protein Binding/physiology , Protein Conformation , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Substrate Specificity
16.
Acta Crystallogr D Biol Crystallogr ; 65(Pt 1): 34-40, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19153464

ABSTRACT

The enzyme dehaloperoxidase (DHP) from the terebellid polychaete Amphitrite ornata is a heme protein which has a globin fold but can function as both a hemoglobin and a peroxidase. As a peroxidase, DHP is capable of converting 2,4,6-trihalophenols to the corresponding 2,6-dihaloquinones in the presence of hydrogen peroxide. As a hemoglobin, DHP cycles between the oxy and deoxy states as it reversibly binds oxygen for storage. Here, it is reported that the distal histidine, His55, exhibits conformational flexibility in the deoxy form and is consequently observed in two solvent-exposed conformations more than 9.5 A away from the heme. These conformations are analogous to the open conformation of sperm whale myoglobin. The heme iron in deoxy ferrous DHP is five-coordinate and has an out-of-plane displacement of 0.25 A from the heme plane. The observation of five-coordinate heme iron with His55 in a remote solvent-exposed conformation is consistent with the hypothesis that His55 interacts with heme iron ligands through hydrogen bonding in the closed conformation. Since His55 is also displaced by the binding of 4-iodophenol in an internal pocket, these results provide new insight into the correlation between heme iron ligation, molecular binding in the distal pocket and the conformation of the distal histidine in DHP.


Subject(s)
Heme Oxygenase (Decyclizing)/chemistry , Hemoglobins/chemistry , Histidine/chemistry , Peroxidases/chemistry , Polychaeta/enzymology , Animals , Crystallization , Crystallography, X-Ray , Heme Oxygenase (Decyclizing)/metabolism , Hemoglobins/metabolism , Histidine/metabolism , Iodobenzenes/chemistry , Iodobenzenes/metabolism , Peroxidases/metabolism , Protein Binding , Protein Conformation , Solvents
17.
Acta Crystallogr D Biol Crystallogr ; 63(Pt 10): 1094-101, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17881827

ABSTRACT

The dehaloperoxidase (DHP) from the terebellid polychaete Amphitrite ornata is an enzyme that converts para-halogenated phenols to the corresponding quinones in the presence of hydrogen peroxide. Its enzymatic activity is similar to that of heme peroxidases such as horseradish peroxidase, yet it has the structural characteristics of the globin family of proteins, the main functions of which are oxygen transport and storage. In order to investigate the dual function of this hemoglobin peroxidase, the enzyme was expressed in Escherichia coli as a recombinant protein in its wild-type form and as a mutant protein in which Cys73 was replaced by a serine residue (C73S). Both the wild-type and mutant proteins were crystallized and their structures were determined at 100 K to a resolution of 1.62 A. The structure of the wild-type protein demonstrated that it was in the metaquo form, with the heme iron in the ferric oxidation state and the bound water lying 2.2 A from the heme iron. The structure of the C73S mutant protein was shown to contain a ferrous heme iron with a bound oxygen molecule. The bent bonding geometry of the Fe-O(1)-O(2) adduct results in a hydrogen bond of length 2.8 A between the second O atom, O(2), of molecular oxygen and N(2) of the distal histidine residue (His55) in both subunits contained within the asymmetric unit. This hydrogen-bonding interaction between His55 and the bound diatomic oxygen molecule provides new insight into the catalytic activation of H(2)O(2), which is essential for peroxidase activity.


Subject(s)
Crystallography, X-Ray/methods , Heme/chemistry , Hemoglobins/chemistry , Peroxidases/chemistry , Polychaeta/metabolism , Recombinant Proteins/chemistry , Animals , Binding Sites , Cysteine/chemistry , Escherichia coli/metabolism , Hydrogen Bonding , Models, Chemical , Models, Molecular , Molecular Conformation , Protein Conformation , Serine/chemistry
18.
Structure ; 12(11): 2025-36, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15530367

ABSTRACT

RalA is a GTPase with effectors such as Sec5 and Exo84 in the exocyst complex and RalBP1, a GAP for Rho proteins. We report the crystal structures of Ral-GppNHp and Ral-GDP. Disordered switch I and switch II, located away from crystal contacts, are observed in one of the molecules in the asymmetric unit of the Ral-GppNHp structure. In the other molecule in the asymmetric unit, a second Mg(2+) ion is bound to the GppNHp gamma-phosphate in an environment in which switch I is pulled away from the nucleotide and switch II is found in a tight beta turn. Clustering of conserved residues on the surface of Ral-GppNHp identifies two putative sites for protein-protein interaction. One site is adjacent to switch I. The other is modulated by switch II and is obstructed in Ral-GDP. The Ral structures are discussed in the context of the published structures of the Ral/Sec5 complex, Ras, and Rap.


Subject(s)
Guanosine Diphosphate/chemistry , Guanosine Triphosphate/chemistry , rap GTP-Binding Proteins/chemistry , ras Proteins/chemistry , Amino Acid Sequence , Binding Sites , Catalytic Domain , Crystallography, X-Ray , Guanosine Diphosphate/metabolism , Guanosine Triphosphate/analogs & derivatives , Guanosine Triphosphate/metabolism , Models, Molecular , Molecular Sequence Data , Protein Conformation , Sequence Homology, Amino Acid , rap GTP-Binding Proteins/metabolism , ras Proteins/metabolism
19.
Structure ; 11(7): 747-51, 2003 Jul.
Article in English | MEDLINE | ID: mdl-12842038

ABSTRACT

Room temperature crystal structures of crosslinked H-Ras bound to GMPPNP were solved in 50% 2,2,2-trifluoroethanol, 60% 1,6-hexanediol, and 50% isopropanol. The disordered switch II region of Ras is ordered in the presence of 2,2,2-trifluoroethanol or 1,6-hexanediol. The overall backbone conformation of switch II in these organic solvents is the same as in the Ras-GMPPNP complexes with RalGDS, PI(3) kinase, and RasGAP, indicating a biologically relevant form. Key polar interactions that stabilize the ordered switch are enhanced in the presence of hydrophobic cosolvents. These results suggest that hydrophobic solvents can be used in general to order short biologically relevant segments of disordered regions in protein crystals by favoring H-bonding interactions between atoms that are highly solvated and mobile in aqueous solution.


Subject(s)
Guanosine Triphosphate/analogs & derivatives , Organic Chemicals/chemistry , Solvents/chemistry , ras Proteins/chemistry , Crystallization , Guanosine Triphosphate/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...