Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Rep ; 12(1): 15931, 2022 09 23.
Article in English | MEDLINE | ID: mdl-36151245

ABSTRACT

Testosterone is a hormone that plays a key role in carbohydrate, fat, and protein metabolism. Testosterone deficiency is associated with multiple comorbidities, e.g., metabolic syndrome and type 2 diabetes. Despite its importance in many metabolic pathways, the mechanisms by which it controls metabolism are not fully understood. The present study investigated the short-term metabolic changes of pharmacologically induced castration and, subsequently, testosterone supplementation in healthy young males. Thirty subjects were submitted to testosterone depletion (TD) followed by testosterone supplementation (TS). Plasma samples were collected three times corresponding to basal, low, and restored testosterone levels. An untargeted metabolomics study was performed by liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS) to monitor the metabolic changes induced by the altered hormone levels. Our results demonstrated that TD was associated with major metabolic changes partially restored by TS. Carnitine and amino acid metabolism were the metabolic pathways most impacted by variations in testosterone. Furthermore, our results also indicated that LH and FSH might strongly alter the plasma levels of indoles and lipids, especially glycerophospholipids and sphingolipids. Our results demonstrated major metabolic changes induced by low testosterone that may be important for understanding the mechanisms behind the association of testosterone deficiency and its comorbidities.


Subject(s)
Infertility, Male , Metabolome , Testosterone , Amino Acids/metabolism , Carbohydrates , Carnitine , Dietary Supplements , Follicle Stimulating Hormone , Glycerophospholipids , Humans , Indoles , Infertility, Male/chemically induced , Lipids , Luteinizing Hormone , Male , Sphingolipids , Testosterone/pharmacology
2.
Life (Basel) ; 11(11)2021 Nov 22.
Article in English | MEDLINE | ID: mdl-34833152

ABSTRACT

Long term effect of testosterone (T) deficiency impairs metabolism and is associated with muscle degradation and metabolic disease. The association seems to have a bidirectional nature and is not well understood. The present study aims to investigate the early and unidirectional metabolic effect of induced T changes by measuring fasting amino acid (AA) levels in a human model, in which short-term T alterations were induced. We designed a human model of 30 healthy young males with pharmacologically induced T changes, which resulted in three time points for blood collection: (A) baseline, (B) low T (3 weeks post administration of gonadotropin releasing hormone antagonist) and (C) restored T (2 weeks after injection of T undecanoate). The influence of T on AAs was analyzed by spectrophotometry on plasma samples. Levels of 9 out of 23 AAs, of which 7 were essential AAs, were significantly increased at low T and are restored upon T supplementation. Levels of tyrosine and phenylalanine were most strongly associated to T changes. Short-term effect of T changes suggests an increased protein breakdown that is restored upon T supplementation. Fasting AA levels are able to monitor the early metabolic changes induced by the T fluctuations.

SELECTION OF CITATIONS
SEARCH DETAIL