Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
3.
Nature ; 463(7281): 671-5, 2010 Feb 04.
Article in English | MEDLINE | ID: mdl-20130649

ABSTRACT

Obesity has become a major worldwide challenge to public health, owing to an interaction between the Western 'obesogenic' environment and a strong genetic contribution. Recent extensive genome-wide association studies (GWASs) have identified numerous single nucleotide polymorphisms associated with obesity, but these loci together account for only a small fraction of the known heritable component. Thus, the 'common disease, common variant' hypothesis is increasingly coming under challenge. Here we report a highly penetrant form of obesity, initially observed in 31 subjects who were heterozygous for deletions of at least 593 kilobases at 16p11.2 and whose ascertainment included cognitive deficits. Nineteen similar deletions were identified from GWAS data in 16,053 individuals from eight European cohorts. These deletions were absent from healthy non-obese controls and accounted for 0.7% of our morbid obesity cases (body mass index (BMI) >or= 40 kg m(-2) or BMI standard deviation score >or= 4; P = 6.4 x 10(-8), odds ratio 43.0), demonstrating the potential importance in common disease of rare variants with strong effects. This highlights a promising strategy for identifying missing heritability in obesity and other complex traits: cohorts with extreme phenotypes are likely to be enriched for rare variants, thereby improving power for their discovery. Subsequent analysis of the loci so identified may well reveal additional rare variants that further contribute to the missing heritability, as recently reported for SIM1 (ref. 3). The most productive approach may therefore be to combine the 'power of the extreme' in small, well-phenotyped cohorts, with targeted follow-up in case-control and population cohorts.


Subject(s)
Chromosome Deletion , Chromosomes, Human, Pair 16/genetics , Obesity/genetics , Obesity/physiopathology , Penetrance , Adolescent , Adult , Age of Onset , Aging , Body Mass Index , Case-Control Studies , Child , Cognition Disorders/complications , Cognition Disorders/genetics , Cohort Studies , Europe , Female , Genome-Wide Association Study , Heterozygote , Humans , Inheritance Patterns/genetics , Male , Mutation/genetics , Obesity/complications , Reproducibility of Results , Sex Characteristics , Young Adult
4.
Cytogenet Genome Res ; 123(1-4): 17-26, 2008.
Article in English | MEDLINE | ID: mdl-19287135

ABSTRACT

Copy number variants (CNVs) overlap over 7000 genes, many of which are pivotal in biological pathways. The implications of this are profound, with consequences for evolutionary studies, population genetics, gene function and human phenotype, including elucidation of genetic susceptibility to major common diseases, the heritability of which has thus far defied full explanation. Even though this research is still in its infancy, CNVs have already been associated with a number of monogenic, syndromic and complex diseases: the development of high throughput and high resolution techniques for CNV screening is likely to bring further new insights into the contribution of copy number variation to common diseases. Amongst genes overlapped by CNVs, significant enrichments for certain gene ontology categories have been identified, including those related to immune responses and interactions with the environment. Genes in both of these categories are thought to be important in evolutionary adaptation and to be particular targets of natural selection. Thus, a full appreciation of copy number variation may be important for our understanding of human evolution.


Subject(s)
Disease/genetics , Gene Dosage/genetics , Animals , Evolution, Molecular , Humans , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...