Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 152: 492-502, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32097738

ABSTRACT

Amphotericin B is an antibiotic used in the treatment of fungal disease and leishmania; however, it exhibits side effects to patients, hindering its wider application. Therefore, nanocarriers have been investigated as delivery systems for amphotericin B (AMB) in order to decrease its toxicity, besides increase bioavailability and solubility. Amphiphilic copolymers are interesting materials to encapsulate hydrophobic drugs such as AMB, hence copolymers of cashew gum (CG) and l-lactide (LA) were synthesized using two different CG:LA molar ratios (1:1 and 1:10). Data obtained revealed that copolymer nanoparticles present similar figures for particle sizes and zeta potentials; however, particle size of encapsulated AMB increases if compared to unloaded nanoparticles. The 1:10 nanoparticle sample has better stability although higher polydispersity index (PDI) if compared to 1:1 sample. High amphotericin (AMB) encapsulation efficiencies and low hemolysis were obtained. AMB loaded copolymers show lower aggregation pattern than commercial AMB solution. AMB loaded nanoparticles show antifungal activities against four C. albicans strains. It can be inferred that cashew gum/polylactide copolymers have potential as nanocarrier systems for AMB.


Subject(s)
Amphotericin B/chemistry , Drug Delivery Systems , Nanoparticles/chemistry , Polyesters/chemistry , Anacardium , Antifungal Agents/pharmacology , Candida albicans , Erythrocytes/drug effects , Hemolysis/drug effects , Humans , In Vitro Techniques , Magnetic Resonance Spectroscopy , Microbial Sensitivity Tests , Particle Size , Spectrophotometry, Infrared , Spectroscopy, Fourier Transform Infrared
2.
Pharmaceuticals (Basel) ; 13(1)2020 Jan 18.
Article in English | MEDLINE | ID: mdl-31963683

ABSTRACT

Anadenanthera colubrina var. cebil (Griseb.) Altschul (Fabaceae family), commonly known as the red angico tree, is a medicinal plant found throughout Brazil's semi-arid area. In this study, a chemical analysis was performed to investigate the antidiarrheal activity and safety profile of red angico gum (RAG), a biopolymer extracted from the trunk exudate of A. colubrina. Upon FT-IR spectroscopy, RAG showed bands in the regions of 1608 cm-1, 1368 cm-1, and 1029 cm-1, which relate to the vibration of O-H water molecules, deformation vibration of C-O bands, and vibration of the polysaccharide C-O band, respectively, all of which are relevant to glycosidic bonds. The peak molar mass of RAG was 1.89 × 105 g/mol, with the zeta potential indicating electronegativity. RAG demonstrated high yield and solubility with a low degree of impurity. Pre-treatment with RAG reduced the total diarrheal stool and enteropooling. RAG also enhanced Na+/K+-ATPase activity and reduced gastrointestinal transit, and thereby inhibited intestinal smooth muscle contractions. Enzyme-Linked Immunosorbent Assay (ELISA) demonstrated that RAG can interact with GM1 receptors and can also reduce E. coli-induced diarrhea in vivo. Moreover, RAG did not induce any signs of toxicity in mice. These results suggest that RAG is a possible candidate for the treatment of diarrheal diseases.

3.
Front Physiol ; 8: 988, 2017.
Article in English | MEDLINE | ID: mdl-29249988

ABSTRACT

Periodontitis is very prevalent worldwide and is one of the major causes of tooth loss in adults. About 80% of the worldwide population use medicinal plants for their health care. Stemodia maritima L. (S. maritima) antioxidant and antimicrobial effects in vitro as well as anti-inflammatory properties. Herein, the potential therapeutic effect of S. maritima was assessed in rats subjected to experimental periodontitis (EP). EP was induced in female Wistar rats by nylon thread ligature around 2nd upper left molars for 11 days. Animals received (per os) S. maritima (0.2; 1 or 5 mg/kg) or vehicle (saline + DMSO) 1 h before ligature and then once daily for 11 days. The naive group had no manipulation. After this time-point, the animals were terminally anesthetized, and the maxillae were removed for morphometric and histological analyzes (HE). Gingival tissues were dissected to cytokine levels detection (TNF-α, IL1-ß, CINC-1, and IL-10), enzymes superoxide dismutase (SOD), and catalase (CAT) analysis, as well as gene expression (TNF-α, IL-1ß, RANK, and iNOS) by qRT-PCR. Systemic parameters (weight variation, plasma levels of hepatic enzymes aspartate aminotransferase (AST) and alanine aminotransferase (ALT), creatinine, total alkaline phosphatase (TALP), and bone alkaline phosphatase (BALP) were performed. Histological analysis of the stomach, liver, kidney, and heart was also performed. S. maritima (5 mg/kg) decreased alveolar bone loss, TNF-α and CINC-1 gingival levels, oxidative stress, and transcription of TNF-α, IL1-ß, RANK, and iNOS genes. It elevated both BALP activity and IL-10 gingival levels. The animals showed no any signs of toxicity. In conclusion, S. maritima reduced pro-inflammatory cytokine production, oxidative stress, and alveolar bone loss in a pre-clinical trial of periodontitis. S. maritima is a potential tool for controlling the development of periodontitis.

SELECTION OF CITATIONS
SEARCH DETAIL