Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Hypertens Rep ; 25(7): 107-116, 2023 07.
Article in English | MEDLINE | ID: mdl-37058193

ABSTRACT

PURPOSE OF REVIEW: The response to natural stressors involves both cardiac stimulation and vascular changes, primarily triggered by increases in sympathetic activity. These effects lead to immediate flow redistribution that provides metabolic support to priority target organs combined with other key physiological responses and cognitive strategies, against stressor challenges. This extremely well-orchestrated response that was developed over millions of years of evolution is presently being challenged, over a short period of time. In this short review, we discuss the neurogenic background for the origin of emotional stress-induced hypertension, focusing on sympathetic pathways from related findings in humans and animals. RECENT FINDINGS: The urban environment offers a variety of psychological stressors. Real or anticipatory, emotional stressors may increase baseline sympathetic activity. From routine day-to-day traffic stress to job-related anxiety, chronic or abnormal increases in sympathetic activity caused by emotional stressors can lead to cardiovascular events, including cardiac arrhythmias, increases in blood pressure and even sudden death. Among the various alterations proposed, chronic stress could modify neuroglial circuits or compromise antioxidant systems that may alter the responsiveness of neurons to stressful stimuli. These phenomena lead to increases in sympathetic activity, hypertension and consequent cardiovascular diseases. The link between anxiety, emotional stress, and hypertension may result from an altered neuronal firing rate in central pathways controlling sympathetic activity. The participation of neuroglial and oxidative mechanisms in altered neuronal function is primarily involved in enhanced sympathetic outflow. The significance of the insular cortex-dorsomedial hypothalamic pathway in the evolution of enhanced overall sympathetic outflow is discussed.


Subject(s)
Hypertension , Psychological Distress , Animals , Humans , Hypertension/etiology , Heart , Blood Pressure/physiology , Hypothalamus , Sympathetic Nervous System
2.
Life Sci ; 210: 55-64, 2018 Oct 01.
Article in English | MEDLINE | ID: mdl-30170073

ABSTRACT

Actually, arterial hypertension is a major public health concern, which involves the renin angiotensin aldosterone system (RAS), via activation of the angiotensin receptors AT1 and AT2 of the cardiovascular system. Although angiotensin is an important stimulant of the gut permeability to sodium and water, little is known about the effects of arterial hypertension on gut motor behavior. Thus, we evaluated in rats the effect of hypertension induced by two-kidney one-clip (2K1C) model on the gastric motility, as well as the influence of exercise and RAS blockers treatment in such phenomenon. One week after surgery the rats were treated with Aliskiren (50 mg·kg-1, p.o.), Captopril (50 mg·kg-1, p.o.) or Losartan (10 mg·kg-1, p.o). Other group of rats was submitted to swimming with 5% body weight overload. After 4 weeks of physical training or pharmacological treatment, we assessed the gastric retention in all groups (GR) of a liquid test meal, the mean arterial pressure (MAP), the heart rate (HR) and the HR variation (HRV) as well as the in vitro contractility of gastric fundus. Renovascular hypertension increased (p < 0.05) the GR, MAP and HR, a phenomenon prevented by pretreatment with RAS blockers or exercise. The two kidney one-clip Hypertension (2K1C) decreased (p < 0.05) the gastric fundus responsiveness, a phenomenon also prevented by exercise. It conclusion, renovascular hypertension delays the gastric emptying of liquids, a phenomenon involving the activation of RAS, where exercise or blockade with aliskiren, captopril and losartan prevent gastric dysmotility.


Subject(s)
Antihypertensive Agents/pharmacology , Gastric Emptying/physiology , Gastroparesis/therapy , Hypertension, Renovascular/complications , Physical Conditioning, Animal , Renin-Angiotensin System/drug effects , Angiotensin II/metabolism , Animals , Combined Modality Therapy , Gastric Emptying/drug effects , Gastroparesis/etiology , Gastroparesis/metabolism , Male , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...