Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicol In Vitro ; 88: 105562, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36690282

ABSTRACT

Dengue fever is considered a major public health problem in tropical and subtropical regions. Our study analyzed the effect of BaltPLA2, a phospholipase A2 from Bothrops alternatus snake venom, on the viability of cells infected with Dengue virus. In presence of BaltPLA2, the viability of infected cells increased significantly in virucidal, post-treatment, and adsorption assays. Although preliminary these results reveal the need for further studies to investigated whether BaltPLA2 has antiviral activity against Dengue virus.


Subject(s)
Bothrops , Crotalid Venoms , Dengue Virus , Animals , Phospholipases A2/pharmacology , Snake Venoms , Antiviral Agents/pharmacology , Crotalid Venoms/pharmacology
2.
Article in English | MEDLINE | ID: mdl-33915386

ABSTRACT

C-type lectin-like proteins found in snake venom, known as snaclecs, have important effects on hemostasis through targeting membrane receptors, coagulation factors and other hemostatic proteins. Here, we present the isolation and functional characterization of a snaclec isolated from Bothrops alternatus venom, designated as Baltetin. We purified the protein in three chromatographic steps (anion-exchange, affinity and reversed-phase chromatography). Baltetin is a dimeric snaclec that is approximately 15 and 25 kDa under reducing and non-reducing conditions, respectively, as estimated by SDS-PAGE. Matrix-assisted laser desorption and ionization time-of-flight mass spectrometry and Edman degradation sequencing revealed that Baltetin is a heterodimer. The first 40 amino acid residues of the N-terminal region of Baltetin subunits share a high degree of sequence identity with other snaclecs. Baltetin had a specific, dose-dependent inhibitory effect on epinephrine-induced platelet aggregation in human platelet-rich plasma, inhibiting up to 69% of platelet aggregation. Analysis of the infrared spectra suggested that the interaction between Baltetin and platelets can be attributed to the formation of hydrogen bonds between the PO32- groups in the protein and PO2- groups in the platelet membrane. This interaction may lead to membrane lipid peroxidation, which prevents epinephrine from binding to its receptor. The present work suggests that Baltetin, a new C-type lectin-like protein isolated from B. alternatus venom, is the first snaclec to inhibit epinephrine-induced platelet aggregation. This could be of medical interest as a new tool for the development of novel therapeutic agents for the prevention and treatment of thrombotic disorders.

3.
Toxicon ; 187: 10-18, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32846146

ABSTRACT

Snakebite accidents are considered serious public health problems. They are often neglected, and individuals who have received insufficient treatment are subjected to various disabling alterations. Snake venoms are secretions composed of biologically active molecules capable of triggering local and systemic effects in envenomation victims. Bothropic snakes are responsible for most of the ophidian accidents in Brazil; their venoms are mainly related to local manifestations, due to a composition that is especially rich in proteases and phospholipases A2. The most common local damages are inflammation, with consequent cellular activation and release of inflammatory mediators, hemorrhage, edema, pain and (myo)necrosis, which may lead to amputation of the affected areas. Antivenom therapy is the main treatment for snakebites. However, the efficiency is mainly due to the neutralization of the toxins responsible for the systemic alterations. Thus, the local damages can evolve to markedly compromise the tissue. The complexity of these local effects associated with the toxicity of the snake venom components of the genus Bothrops, arouse interest in the study of the biochemical and pathophysiological mechanisms involved with the actions caused by toxins of the venom. Therefore, this review aims to analyze the edematogenic, hyperalgesic and myotoxic effects caused by Brazilian bothropic venoms in order to contribute to the study and elucidation of the mechanisms of action of its components and, consequently, enable discoveries of more effective combined therapies in the treatment of local damages resulting from envenoming.


Subject(s)
Snake Bites/epidemiology , Animals , Bothrops , Brazil/epidemiology , Crotalid Venoms/toxicity , Edema/epidemiology , Humans , Hyperalgesia/epidemiology , Muscular Diseases/epidemiology , Necrosis/epidemiology
4.
Protein Pept Lett ; 25(10): 943-952, 2018.
Article in English | MEDLINE | ID: mdl-30289061

ABSTRACT

BACKGROUND: In last decades, snake venoms have aroused great interest of the medicine due to the pathophysiological effects caused by their toxins. These include the phospholipases A2, low molecular weight proteins capable of causing haemorrhagic, myotoxic, inflammatory and neurotoxic effects after an ophidian accident. The present work describes the isolation and biochemical characterization of a new PLA2 isolated from the B. alternatus snake venom, which was named BaltPLA2. METHOD: The rapid and efficient purification of this toxin was performed using only two chromatography steps (anion exchange and hydrophobic chromatography). RESULTS: BaltPLA2 is an acidic protein (pI 4.4) with an apparent molecular mass of 17000 (SDSPAGE) and 14074.74 Da (MALDI TOF/TOF). Analysis of fragments ion by MS / MS showed the following internal amino acid sequence SGVIICGEGTPCEK, which did not exhibit homology with other PLA2 from the same venom. BaltPLA2 is a catalytically active, which displayed an anticoagulant action, inhibition of platelet aggregation induced by epinephrine (~ 80%) and ADP (24%). BaltPLA2 also was able to induce myonecrosis and the release of cytokines (IL-10, IL-12 and TNF- α) in macrophages culture. CONCLUSION: The results presented in this work greatly contribute to a better understanding of the mechanism of enzymatic and pharmacological actions of PLA2s from snake venoms and they may contribute to its application in medical research.


Subject(s)
Bothrops , Phospholipases A2/pharmacology , Platelet Aggregation/drug effects , Snake Venoms/enzymology , Amino Acid Sequence , Animals , Humans , Phospholipases A2/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...