Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Neurosci Lett ; 813: 137407, 2023 09 14.
Article in English | MEDLINE | ID: mdl-37499743

ABSTRACT

This study evaluated the effects of previous exposure to Transcranial Direct Current Stimulation (tDCS) on nociceptive, neuroinflammatory, and neurochemical parameters, in rats subjected to an incisional pain model. Forty adult male Wistar rats (60 days old; weighing âˆ¼ 250 g) were divided into five groups: 1. control (C); 2. drugs (D); 3. surgery (S); 4. surgery + sham-tDCS (SsT) and 5. surgery + tDCS (ST). Bimodal tDCS (0.5 mA) was applied for 20 min/day/8 days before the incisional model. Mechanical allodynia (von Frey) was evaluated at different time points after surgery. Cytokines and BDNF levels were evaluated in the cerebral cortex, hippocampus, brainstem, and spinal cord. Histology and activity of myeloperoxidase (MPO) and N-acetyl-ß-D-glucosaminidase (NAGase) were evaluated in the surgical lesion sites in the right hind paw. The results demonstrate that the surgery procedure increased BDNF and IL-6 levels in the spinal cord levels in the hippocampus, and decreased IL-1ß and IL-6 levels in the cerebral cortex, IL-6 levels in the hippocampus, and IL-10 levels in the brainstem and hippocampus. In addition, preemptive tDCS was effective in controlling postoperative pain, increasing BDNF, IL-6, and IL-10 levels in the spinal cord and brainstem, increasing IL-1ß in the spinal cord, and decreasing IL-6 levels in the cerebral cortex and hippocampus, IL-1ß and IL-10 levels in the hippocampus. Preemptive tDCS also contributes to tissue repair, preventing chronic inflammation, and consequent fibrosis. Thus, these findings imply that preemptive methods for postoperative pain management should be considered an interesting pain management strategy, and may contribute to the development of clinical applications for tDCS in surgical situations.


Subject(s)
Analgesia , Transcranial Direct Current Stimulation , Rats , Male , Animals , Transcranial Direct Current Stimulation/methods , Rats, Wistar , Interleukin-10 , Pain Management , Brain-Derived Neurotrophic Factor , Interleukin-6 , Pain, Postoperative/prevention & control , Inflammation/prevention & control
2.
Rheumatology (Oxford) ; 53(3): 425-32, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24241037

ABSTRACT

OBJECTIVE: Mitogen-activated protein kinase (MAPK) p38 inhibitors have entered the clinical phase, although many of them have failed due to high toxicity and lack of efficacy. In the present study we compared the effects of the selective p38 inhibitor ML3403 and the dual p38-PDE4 inhibitor CBS-3595, on inflammatory and nociceptive parameters in a model of polyarthritis in rats. METHODS: Male Wistar rats (180-200 g) were used for the complete Freund's adjuvant (CFA)-induced arthritis model and they were evaluated at 14-21 days. We also analysed the effects of these pharmacological tools on liver and gastrointestinal toxicity and on cytokine levels. RESULTS: Repeated CBS-3595 (3 mg/kg) or ML3403 (10 mg/kg) administration produced significant anti-inflammatory actions in the chronic arthritis model induced by CFA. CBS-3595 and ML3403 treatment also markedly reduced the production of the proinflammatory cytokine IL-6 in the paw tissue, whereas it widely increased the levels of the anti-inflammatory cytokine IL-10. Moreover, CBS-3595 produced partial anti-allodynic effects in the CFA model at 4 and 8 days after treatment. Notably, ML3403 and CBS-3595 did not show marked signs of hepatoxicity, as supported by unaltered histological observations in the liver sections. Finally, both compounds were safe in the gastrointestinal tract, according to evaluation of intestinal biopsies. CONCLUSION: CBS-3595 displayed a superior profile regarding its anti-inflammatory effects. Thus p38 MAPK/PDE4 blocking might well constitute a relevant strategy for the treatment of RA.


Subject(s)
Arthritis, Experimental/drug therapy , Imidazoles/therapeutic use , Phosphodiesterase 4 Inhibitors/therapeutic use , Protein Kinase Inhibitors/therapeutic use , Pyridines/therapeutic use , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors , Aminopyridines/pharmacology , Aminopyridines/therapeutic use , Animals , Arthritis, Experimental/chemically induced , Biopsy , Cytokines/metabolism , Disease Models, Animal , Freund's Adjuvant/adverse effects , Gastrointestinal Tract/drug effects , Gastrointestinal Tract/pathology , Imidazoles/pharmacology , Liver/drug effects , Liver/pathology , Male , Phosphodiesterase 4 Inhibitors/pharmacology , Protein Kinase Inhibitors/pharmacology , Pyridines/pharmacology , Rats , Rats, Wistar , Treatment Outcome
3.
Eur J Med Chem ; 43(6): 1237-47, 2008 Jun.
Article in English | MEDLINE | ID: mdl-17889969

ABSTRACT

In this work, we reported the synthesis and evaluation of the analgesic and anti-inflammatory properties of novel 3- or 4-substituted 5-trifluoromethyl-5-hydroxy-4,5-dihydro-1H-1-carboxyamidepyrazoles (where 3-/4-substituent=H/H, Me/H, Et/H, Pr/H, i-Pr/H, Bu/H, t-Bu/H, Ph/H, 4-Br-Ph/H and H/Me) designed in the exploration of the bioisosteric replacement of benzene present in salicylamide with a 5-trifluoromethyl-4,5-dihydro-1H-pyrazole scaffold. Target compounds were synthesized from the cyclocondensation of 4-alkoxy-1,1,1-trifluoromethyl-3-alken-2-ones with semicarbazide hydrochloride through a rapid one-pot reaction via microwave irradiation. In addition to spectroscopic data, the structure of the compounds was supported by X-ray diffraction. Subcutaneous administration of the 5-trifluoromethyl-4,5-dihydro-1H-pyrazoles decreased pain-related behavior during neurogenic and inflammatory phases of the formalin test in mice. Moreover, the more active analgesic compounds (3-/4-=Et/H and H/Me) significantly decreased carrageenan-induced paw edema in mice. The data obtained in this work suggest that the synthesized compounds could be promising candidates for the future development of novel analgesic and anti-inflammatory agents.


Subject(s)
Analgesics/chemical synthesis , Analgesics/pharmacology , Anti-Inflammatory Agents/chemical synthesis , Anti-Inflammatory Agents/pharmacology , Drug Design , Microwaves , Pyrazoles/chemical synthesis , Pyrazoles/pharmacology , Analgesics/chemistry , Animals , Anti-Inflammatory Agents/chemistry , Magnetic Resonance Spectroscopy , Male , Mice , Models, Molecular , Pyrazoles/chemistry , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...