Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Expert Rev Vaccines ; 22(1): 1136-1153, 2023.
Article in English | MEDLINE | ID: mdl-37936254

ABSTRACT

INTRODUCTION: Fungal infections are caused by a broad range of pathogenic fungi that are found worldwide with different geographic distributions, incidences, and mortality rates. Considering that there are relatively few approved medications available for combating fungal diseases and no vaccine formulation commercially available, multiple groups are searching for new antifungal drugs, examining drugs for repurposing and developing antifungal vaccines, in order to control deaths, sequels, and the spread of these complex infections. AREAS COVERED: This review provides a summary of advances in fungal vaccine studies and the different approaches under development, such as subunit vaccines, whole organism vaccines, and DNA vaccines, as well as studies that optimize the use of adjuvants. We conducted a literature search of the PubMed with terms: fungal vaccines and genus of fungal pathogens (Cryptococcus spp. Candida spp. Coccidioides spp. Aspergillus spp. Sporothrix spp. Histoplasma spp. Paracoccidioides spp. Pneumocystis spp. and the Mucorales order), a total of 177 articles were collected from database. EXPERT OPINION: Problems regarding the immune response development in an immunocompromised organism, the similarity between fungal and mammalian cells, and the lack of attention by health organizations to fungal infections are closely related to the fact that, at present, there are no fungal vaccines available for clinical use.


Subject(s)
Mycoses , Vaccines , Animals , Humans , Antifungal Agents/therapeutic use , Fungi , Mycoses/prevention & control , Mycoses/drug therapy , Mycoses/epidemiology , Vaccines/therapeutic use , Vaccine Development , Mammals
2.
Microb Pathog ; 181: 106186, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37269878

ABSTRACT

BACKGROUND AND OBJECTIVE: Candida tropicalis is among the most prevalent human pathogenic yeast species. Switch states of C. tropicalis differ in virulence traits. Here, we evaluate the effect of phenotypic switching on phagocytosis and yeast-hyphae transition in C. tropicalis. METHODS: C. tropicalis morphotypes included a clinical strain and two switch strains (rough variant and rough revertant). In vitro, phagocytosis assay was performed using peritoneal macrophages and hemocytes. The proportion of hyphal cells was ascertained by scoring morphology using optical microscopy. Expression of the WOR1 (White-opaque regulator 1) and EFG1 (Enhanced filamentous growth protein 1) was determined by quantitative PCR. RESULTS: The rough variant was more resistant to in vitro phagocytosis by peritoneal macrophages than that observed for the clinical strain, while hemocytes phagocytosed clinical and rough variant to the same extent. The rough revertant was more phagocytosed than the clinical strain by both phagocytes. During co-incubation with phagocytic cells, the clinical strain of C. tropicalis exists mainly as blastoconidia. The co-culture of the rough variant with macrophages resulted in a higher percentage of hyphae than blastoconidia cells, while in co-culture with hemocytes, no differences were observed between the percentage of hyphae and blastoconidia. The expression levels of WOR1 in the rough variant co-cultured with phagocytes were significantly higher than they were in the clinical strain. CONCLUSIONS: Differences on phagocytosis and hyphal growth between switch states cells of C. tropicalis co-cultured with phagocytic cells were observed. The pronounced hyphal growth may affect the complex host-pathogen relationship and favor the pathogen to escape phagocytosis. The pleiotropic effects of phenotypic switching suggest that this event may contribute to the success of infection associated with C. tropicalis.


Subject(s)
Candida tropicalis , Phagocytosis , Humans , Coculture Techniques , Macrophages, Peritoneal , Morphogenesis , Candida albicans
SELECTION OF CITATIONS
SEARCH DETAIL