Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Am J Med Genet A ; 185(8): 2295-2305, 2021 08.
Article in English | MEDLINE | ID: mdl-33913603

ABSTRACT

Patients with unbalanced X-autosome translocations are rare and usually present a skewed X-chromosome inactivation (XCI) pattern, with the derivative chromosome being preferentially inactivated, and with a possible spread of XCI into the autosomal regions attached to it, which can inactivate autosomal genes and affect the patients' phenotype. We describe three patients carrying different unbalanced X-autosome translocations, confirmed by G-banding karyotype and array techniques. We analyzed their XCI pattern and inactivation spread into autosomal regions, through HUMARA, ZDHHC15 gene assay and the novel 5-ethynyl-2'-deoxyuridine (EdU) incorporation assay, and identified an extremely skewed XCI pattern toward the derivative chromosomes for all the patients, and a variable pattern of late-replication on the autosomal regions of the derivative chromosomes. All patients showed phenotypical overlap with patients presenting deletions of the autosomal late-replicating regions, suggesting that the inactivation of autosomal segments may be responsible for their phenotype. Our data highlight the importance of the XCI spread into autosomal regions for establishing the clinical picture in patients carrying unbalanced X-autosome translocations, and the incorporation of EdU as a novel and precise tool to evaluate the inactivation status in such patients.


Subject(s)
Chromosome Disorders/diagnosis , Chromosome Disorders/genetics , Chromosomes , Genetic Association Studies , Phenotype , Translocation, Genetic , X Chromosome Inactivation , Comparative Genomic Hybridization , Cytogenetic Analysis , DNA Replication , DNA-Binding Proteins/genetics , Evolution, Molecular , Humans , In Situ Hybridization, Fluorescence , Receptors, Androgen/genetics
2.
Am J Med Genet A ; 176(5): 1128-1136, 2018 05.
Article in English | MEDLINE | ID: mdl-29681090

ABSTRACT

Williams-Beuren syndrome (WBS) is a common microdeletion syndrome characterized by a 1.5Mb deletion in 7q11.23. The phenotype of WBS has been well described in populations of European descent with not as much attention given to other ethnicities. In this study, individuals with WBS from diverse populations were assessed clinically and by facial analysis technology. Clinical data and images from 137 individuals with WBS were found in 19 countries with an average age of 11 years and female gender of 45%. The most common clinical phenotype elements were periorbital fullness and intellectual disability which were present in greater than 90% of our cohort. Additionally, 75% or greater of all individuals with WBS had malar flattening, long philtrum, wide mouth, and small jaw. Using facial analysis technology, we compared 286 Asian, African, Caucasian, and Latin American individuals with WBS with 286 gender and age matched controls and found that the accuracy to discriminate between WBS and controls was 0.90 when the entire cohort was evaluated concurrently. The test accuracy of the facial recognition technology increased significantly when the cohort was analyzed by specific ethnic population (P-value < 0.001 for all comparisons), with accuracies for Caucasian, African, Asian, and Latin American groups of 0.92, 0.96, 0.92, and 0.93, respectively. In summary, we present consistent clinical findings from global populations with WBS and demonstrate how facial analysis technology can support clinicians in making accurate WBS diagnoses.


Subject(s)
Biological Variation, Population , Genetic Heterogeneity , Williams Syndrome/diagnosis , Williams Syndrome/genetics , Anthropometry/methods , Facies , Humans , Phenotype , Population Groups , Reproducibility of Results , Sensitivity and Specificity , Williams Syndrome/epidemiology
3.
Case Rep Genet ; 2012: 578018, 2012.
Article in English | MEDLINE | ID: mdl-23074688

ABSTRACT

Balanced X-autosome translocations are rare, and female carriers are a clinically heterogeneous group of patients, with phenotypically normal women, history of recurrent miscarriage, gonadal dysfunction, X-linked disorders or congenital abnormalities, and/or developmental delay. We investigated a patient with a de novo X;19 translocation. The six-year-old girl has been evaluated due to hyperactivity, social interaction impairment, stereotypic and repetitive use of language with echolalia, failure to follow parents/caretakers orders, inconsolable outbursts, and persistent preoccupation with parts of objects. The girl has normal cognitive function. Her measurements are within normal range, and no other abnormalities were found during physical, neurological, or dysmorphological examinations. Conventional cytogenetic analysis showed a de novo balanced translocation, with the karyotype 46,X,t(X;19)(p21.2;q13.4). Replication banding showed a clear preference for inactivation of the normal X chromosome. The translocation was confirmed by FISH and Spectral Karyotyping (SKY). Although abnormal phenotypes associated with de novo balanced chromosomal rearrangements may be the result of disruption of a gene at one of the breakpoints, submicroscopic deletion or duplication, or a position effect, X; autosomal translocations are associated with additional unique risk factors including X-linked disorders, functional autosomal monosomy, or functional X chromosome disomy resulting from the complex X-inactivation process.

SELECTION OF CITATIONS
SEARCH DETAIL