Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Extremophiles ; 28(2): 30, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38907846

ABSTRACT

This study characterized cultivable fungi present in sediments obtained from Boeckella Lake, Hope Bay, in the north-east of the Antarctic Peninsula, and evaluated their production of enzymes and biosurfactants of potential industrial interest. A total of 116 fungal isolates were obtained, which were classified into 16 genera within the phyla Ascomycota, Basidiomycota and Mortierellomycota, in rank. The most abundant genera of filamentous fungi included Pseudogymnoascus, Pseudeurotium and Antarctomyces; for yeasts, Thelebolales and Naganishia taxa were dominant. Overall, the lake sediments exhibited high fungal diversity and moderate richness and dominance. The enzymes esterase, cellulase and protease were the most abundantly produced by these fungi. Ramgea cf. ozimecii, Holtermanniella wattica, Leucosporidium creatinivorum, Leucosporidium sp., Mrakia blollopis, Naganishia sp. and Phenoliferia sp. displayed enzymatic index > 2. Fourteen isolates of filamentous fungi demonstrated an Emulsification Index 24% (EI24%) ≥ 50%; among them, three isolates of A. psychrotrophicus showed an EI24% > 80%. Boeckella Lake itself is in the process of drying out due to the impact of regional climate change, and may be lost completely in approaching decades, therefore hosts a threatened community of cultivable fungi that produce important biomolecules with potential application in biotechnological processes.


Subject(s)
Fungi , Geologic Sediments , Lakes , Antarctic Regions , Geologic Sediments/microbiology , Lakes/microbiology , Fungi/enzymology , Fungi/isolation & purification , Fungi/metabolism , Surface-Active Agents/metabolism , Fungal Proteins/metabolism , Cellulase/metabolism , Esterases/metabolism
2.
Braz J Microbiol ; 54(3): 1923-1933, 2023 Sep.
Article in English | MEDLINE | ID: mdl-36274089

ABSTRACT

We evaluated the diversity and enzymatic activities of culturable fungi recovered from cotton baits submerged for 2 years in Hennequin Lake, King George Island, and from benthic biofilms in Kroner Lake, Deception Island, South Shetland Islands, maritime Antarctica. A total of 154 fungal isolates were obtained, representing in rank abundance the phyla Ascomycota, Basidiomycota and Mortierellomycota. Thelebolus globosus, Goffeauzyma sp., Pseudogymnoascus verrucosus and Metschnikowia australis were the most abundant taxa. The fungal community obtained from the biofilm was more diverse and richer than that recovered from the cotton baits. However, diversity indices suggested that the lakes may harbour further fungal diversity. The capabilities of all cultured fungi to produce the extracellular enzymes cellulase, protease, lipase, agarase, carrageenase, invertase, amylase, esterase, pectinase, inulinase and gelatinase at low temperature were evaluated. All enzymes were detected, but the most widely produced were protease and pectinase. The best enzymatic indices were obtained from Holtermanniella wattica (for invertase, esterase), Goffeauzyma sp. (amylase), Metschnikowia australis (protease), Mrakia blollopis (cellulase, pectinase), Pseudogymnoascus verrucosus (agarase, carrageenase) and Leucosporidium fragarium (inulinase). The detection of multiple enzymes reinforces the ecological role of fungi in nutrient cycling in Antarctic lakes, making nutrients available to the complex aquatic food web. Furthermore, such low-temperature-active enzymes may find application in different biotechnological processes, such as in the textile, pharmaceutical, food, detergent and paper industries, as well as environmental application in pollutant bioremediation processes.


Subject(s)
Cellulases , Lakes , Temperature , Antarctic Regions , beta-Fructofuranosidase , Polygalacturonase , Lipase , Peptide Hydrolases , Amylases , Fungi
3.
Braz J Microbiol ; 54(1): 213-222, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36435957

ABSTRACT

We provide the first assessment of fungal diversity associated with historic wooden structures at Whalers Bay (Heritage Monument 71), Deception Island, maritime Antarctic, using DNA metabarcoding. We detected a total of 177 fungal amplicon sequence variants (ASVs) dominated by the phyla Ascomycota, Basidiomycota, Mortierellomycota, Chytridiomycota, Monoblepharomycota, Rozellomycota, and Zoopagomycota. The assemblages were dominated by Helotiales sp. 1 and Herpotrichiellaceae sp. 1. Functional assignments indicated that the taxa detected were dominated by saprotrophic, plant and animal pathogenic, and symbiotic taxa. Metabarcoding revealed the presence of a rich and complex fungal community, which may be due to the wooden structures acting as baits attracting taxa to niches sheltered against extreme conditions, generating a hotspot for fungi in Antarctica. The sequences assigned included both cosmopolitan and endemic taxa, as well as potentially unreported diversity. The detection of DNA assigned to taxa of human and animal opportunistic pathogens raises a potential concern as Whalers Bay is one of the most popular visitor sites in Antarctica. The use of metabarcoding to detect DNA present in environmental samples does not confirm the presence of viable or metabolically active fungi and further studies using different culturing conditions and media, different growth temperatures and incubation periods, in combination with further molecular approaches such as shotgun sequencing are now required to clarify the functional ecology of these fungi.


Subject(s)
Ascomycota , DNA Barcoding, Taxonomic , Animals , Humans , Antarctic Regions , Bays , Fungi , Ascomycota/genetics , DNA , Deception , DNA, Fungal
4.
Sci Rep ; 12(1): 21044, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36473886

ABSTRACT

We assessed the fungal and fungal-like sequence diversity present in marine sediments obtained in the vicinity of the South Shetland Islands (Southern Ocean) using DNA metabarcoding through high-throughput sequencing (HTS). A total of 193,436 DNA reads were detected in sediment obtained from three locations: Walker Bay (Livingston Island) at 52 m depth (48,112 reads), Whalers Bay (Deception Island) at 151 m (104,704) and English Strait at 404 m (40,620). The DNA sequence reads were assigned to 133 distinct fungal amplicon sequence variants (ASVs) representing the phyla Ascomycota, Basidiomycota, Mortierellomycota, Chytridiomycota, Glomeromycota, Monoblepharomycota, Mucoromycota and Rozellomycota and the fungal-like Straminopila. Thelebolus balaustiformis, Pseudogymnoascus sp., Fungi sp. 1, Ciliophora sp., Agaricomycetes sp. and Chaetoceros sp. were the dominant assigned taxa. Thirty-eight fungal ASVs could only be assigned to higher taxonomic levels, and may represent taxa not currently included in the available databases or represent new taxa and/or new records for Antarctica. The total fungal community displayed high indices of diversity, richness and moderate to low dominance. However, diversity and taxa distribution varied across the three sampling sites. In Walker Bay, unidentified fungi were dominant in the sequence assemblage. Whalers Bay sediment was dominated by Antarctic endemic and cold-adapted taxa. Sediment from English Strait was dominated by Ciliophora sp. and Chaetoceros sp. These fungal assemblages were dominated by saprotrophic, plant and animal pathogenic and symbiotic taxa. The detection of an apparently rich and diverse fungal community in these marine sediments reinforces the need for further studies to characterize their richness, functional ecology and potential biotechnological applications.


Subject(s)
Biotechnology , DNA Barcoding, Taxonomic , Antarctic Regions , Ecology , DNA
5.
Fungal Biol ; 126(10): 640-647, 2022 10.
Article in English | MEDLINE | ID: mdl-36116896

ABSTRACT

We detected the fungal assemblages present in lake sediments on James Ross Island, Antarctica, using DNA metabarcoding. A total of 132 amplicon sequence variants (ASVs) were assigned, dominated by taxa of the phyla Ascomycota, Basidiomycota, Mortierellomycota and Mucoromycota. The less common phyla Chytridiomycota, Rozellomycota, Monoblepharomycota, Basidiobolomycota, Aphelidiomycota and the fungus-like Straminopila were also detected. Fungal sp. 1, Fungal sp. 2, Spizellomycetales sp. 1, Rozellomycotina sp. 1, Talaromyces rubicundus and Betamyces sp. dominated the assemblages. In general, the assemblages displayed high diversity and richness, and moderate dominance. Saprophytic, pathogenic and symbiotic fungi were detected. The metabarcoding data indicated that Antarctic lakes may represent a hotspot of fungal diversity in Antarctica. The sediments of these lakes may accumulate different fungal fragments and active fungal mycelia and their propagules, deposited over long periods of time. Lakes in the Antarctic Peninsula region are sensitive environments threatened by the effects of regional climatic changes. The abundance of sequences of little-known Rozellomycota and Chytridiomycota (Spizellomycetales) taxa in these ecosystems highlights the need for further studies to identify if they are metabolically active in the sediments and whether they have potentially pathogenic capabilities.


Subject(s)
Chytridiomycota , DNA, Environmental , Antarctic Regions , Chytridiomycota/genetics , Ecosystem , Lakes/microbiology
6.
Sci Rep ; 12(1): 8407, 2022 05 19.
Article in English | MEDLINE | ID: mdl-35589789

ABSTRACT

We assessed fungal diversity in sediments obtained from four lakes in the South Shetland Islands and James Ross Island, Antarctica, using DNA metabarcoding. We detected 218 amplicon sequence variants (ASVs) dominated by the phyla Ascomycota, Basidiomycota, Mortierellomycota, Mucoromycota and Chytridiomycota. In addition, the rare phyla Aphelidiomycota, Basidiobolomycota, Blastocladiomycota, Monoblepharomycota, Rozellomycota and Zoopagomycota as well as fungal-like Straminopila belonging to the phyla Bacillariophyta and Oomycota were detected. The fungal assemblages were dominated by unknown fungal taxa (Fungal sp. 1 and Fungal sp. 2), followed by Talaromyces rubicundus and Dactylonectria anthuriicola. In general, they displayed high diversity, richness and moderate dominance. Sequences representing saprophytic, pathogenic and symbiotic fungi were detected, including the phytopathogenic fungus D. anthuriicola that was abundant, in the relatively young Soto Lake on Deception Island. The lake sediments studied contained the DNA of rich, diverse and complex fungal communities, including both fungi commonly reported in Antarctica and other taxa considered to be rare. However, as the study was based on the use of environmental DNA, which does not unequivocally confirm the presence of active or viable organisms, further studies using other approaches such as shotgun sequencing are required to elucidate the ecology of fungi in these Antarctic lake sediments.


Subject(s)
Ascomycota , Mycobiome , Antarctic Regions , Ascomycota/genetics , Biodiversity , DNA , DNA Barcoding, Taxonomic , DNA, Fungal/genetics , Fungi/genetics , Lakes , Mycobiome/genetics
SELECTION OF CITATIONS
SEARCH DETAIL