Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Plants (Basel) ; 13(16)2024 Aug 17.
Article in English | MEDLINE | ID: mdl-39204729

ABSTRACT

Brazilian soils are predominantly rich in aluminum, which becomes mobile at pH < 5, affecting sensitive plants; however, some species have developed aluminum tolerance mechanisms. The purpose of this study was to compare the physiological responses of Crotalaria genus species, family Fabaceae, which have the ability to associate with nitrogen-fixing bacteria under the influence of Al3+ in the soil. The soil used was Oxisol; the experimental design was in randomized blocks in a factorial scheme (2 × 3): soil factor (available toxic aluminum content; correction of dolomitic limestone-MgCO3) and species factor (C. juncea; C. spectabilis; C. ochroleuca); cultivated within 43, 53, and 53 days, respectively, with five replications; 30 experimental samples. Mass and length, pigments, gas exchange, and changes in nitrogen metabolism were evaluated. C. juncea showed a higher concentration of amino acids in the leaves, internal carbon, and stomatal conductance in soil with Al3+, as well as higher production of ureides, allantoinic acid, allantoic acid, proteins, and amino acids in the nodules, with 78% of the Al3+ accumulation occurring in the roots. C. ochroleuca demonstrated greater shoot length and nodule number production in limed soil; in soil with Al3+, it showed a 91% increase in chlorophyll a content and 93% in carotenoids. C. spectabilis showed a 93% increase in ureide production in the leaves in soil with Al3+.

2.
Environ Sci Pollut Res Int ; 30(33): 80245-80260, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37294492

ABSTRACT

Potentially toxic elements (PTE) in soil like copper (Cu) have been common in agricultural and mining areas worldwide. The sustainable remediation of these areas has been shown to have high socio-environmental relevance and phytoremediation is one of the green technologies to be considered. The challenge is to identify species that are tolerant to PTE, and to assess their phytoremediation potential. The objective of this study was to evaluate the physiological response of Leucaena leucocephala (Lam.) de Wit and to determine the species tolerance and phytoremediation potential to concentrations of Cu in the soil (100, 200, 300, 400 and 500 mg/dm3). The photosynthetic rate was not affected, while the content of chlorophylls decreased as Cu concentrations increased. There was an increased in stomatal conductance and water use efficiency from the treatment of 300. The root biomass and the length were bigger than the shoots, in the treatments above 300. Cu accumulation was greater in the roots than in the shoot of the plants, thus, the Cu translocation index to the shoot was lower. The ability to absorb and accumulate, mainly, Cu in the roots, allowed the development and growth of plants, since the parameters of photosynthesis and biomass accumulation were not affected by the Cu excess. This accumulation in the roots is characterized as a strategy for the phytostabilization of Cu. Therefore, L. leucocephala is tolerant to the Cu concentrations evaluated and has a potential phytoremediation of Cu in the soil.


Subject(s)
Fabaceae , Soil Pollutants , Copper/analysis , Soil Pollutants/analysis , Photosynthesis , Plants , Soil , Biodegradation, Environmental , Plant Roots/chemistry
3.
Plant Physiol Biochem ; 194: 489-498, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36512983

ABSTRACT

Nitrogen metabolism and the production of primary and secondary metabolites vary according to biotic and abiotic factors such as trace elements (TE) stress, and can, therefore, be considered biomarkers. The present study evaluated the effect of copper (Cu) and iron (Fe) TE, separately, on the metabolism of nitrogen compounds and biomass production, partitioned into shoot and roots of Leucaena leucocephala (Lam.) de Wit., and identified possible defense mechanisms linked to nitrogen metabolism. At 120 days of cultivation, the biomass production of L. leucocephala was higher when exposed to excess Fe than Cu. Nonetheless, the biomass gain (%) of plants exposed to Cu was higher, especially the biomass gains in roots. The tolerance and biomass production of L. leucocephala is related to the regulation of nitrogen metabolism and production of secondary metabolites. The biochemistry of plant metabolism against the excess of Cu and Fe TE manifested similarly, but with some specifics regarding the chemical nature of each metal. There was a reduction in the content of ureides and proteins and an increase in amino acids in the roots in relation to the increase in Cu and Fe concentrations. There was low accumulation of proline in the roots in treatments 400 and 500 mg/dm3 compared to the control for both TE. On the other hand, the total phenolic compounds in the roots increased. Our results indicate that the increased synthesis of amino acids and the accumulation of phenolic compounds is involved in the tolerance of L. leucocephala to Cu and Fe.


Subject(s)
Fabaceae , Nitrogen Compounds , Nitrogen Compounds/metabolism , Nitrogen Compounds/pharmacology , Fabaceae/metabolism , Metals/metabolism , Copper/toxicity , Copper/metabolism , Plant Roots/metabolism , Nitrogen/metabolism , Amino Acids/metabolism
4.
Physiol Mol Biol Plants ; 28(6): 1335-1345, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35910437

ABSTRACT

Soil contamination by excess heavy metals or trace elements is a global concern, as these elements are highly bioaccumulated in living organisms, migrating throughout the food chain, and causing health problems. Sustainable technologies, using plants, have been increasingly studied and used to contain, reduce, or extract these elements from the soil. In this sense, it is essential to identify plant species that tolerate certain elements, present high biomass production and are resistant to adverse soil conditions. For this reason, we evaluated the biomass production and tolerance of Cajanus cajan in response to different concentrations of copper (30, 60, 120, and 240 mg/dm3, in addition to the control treatment) in the soil, as well as the effect of this metal on photosynthetic pigments and gas exchange. C. cajan was sown in soil previously contaminated with copper sulfate and cultivated in a greenhouse for 60 days after emergence. C. cajan is copper tolerant, approximately 88% copper is accumulated in the roots and therefore there is low copper translocation to the shoot, consequently, the chlorophyll content, the net photosynthesis rate, carbon assimilation, dry biomass, the root system development, and nodulation were not affected by copper. C. cajan can be explored in strategies to improve soil conditions and is a promising species in soil phytoremediation studies. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-022-01203-6.

SELECTION OF CITATIONS
SEARCH DETAIL